
LATIN AMERICAN JOURNAL OF COMPUTING - LAJC, VOL III, NO. 2, NOVEMBER 2016

ISSN: 1390-9266 – 2016 LAJC

11

Abstract— A previous work has proposed a reflective middleware

Architecture for the management of service-oriented applications. Our

middleware is designed to be fully distributed through all services of the

SOA Application. The architecture uses the model of Autonomic

Computing which allow the adaptation of our system, in order to self-

healing. Particularly, one of the main aspects of this architecture is the

representation of the knowledge. Our architecture uses different

paradigms for the representation of the knowledge. For the diagnosis task,

it uses chronicles, and for the reparation task it uses ontologies. In this

paper, we present the knowledge representation framework, which

represents the knowledge needed to perform the different operations of the

middleware. Specifically, we design a distributed knowledge based on

distributed chronicles, ontologies and other data structures.

Index Terms—Web service fault tolerance, service composition,

fault-repair ontology, Distributed Pattern Recognition, Reflective

middleware

I. INTRODUCTION

he SOA applications (Service Oriented Architecture) are

flexible distributed applications, with loose coupling

between these components, based on a software

development model composed of small units, called services,

which operate in heterogeneous distributed environments. This

approach encourages a programming style based on the

composition and reuse of services (new applications based on

existing services).

The Services are inherently dynamics [1] because they can

evolve (their internal calculation, interfaces, among others) and

alter its results. Now, in the service composition, a failure of a

single service generates an error propagation in the other

services, and in this way, the failure of the system. Such failures

are very hard to be detected and located, so it is necessary to

develop new approaches to enable the diagnosis and correction

of the fails, locals (in a service) or global (in the composition)

One of the main aspects to solve in SOA applications is their

fault tolerance. For that is required a reparation procedure (self-

healing). Repair is to restore the broken functionality, and to

return the system at the normal execution [20, 21]. Correction

of faults in web services always depends of the type of fault.

Dr Aguilar has been partially supported by the Prometeo Project of the

Ministry of Higher Education, Science, Technology and Innovation of the
Republic of Ecuador.

J. Vizcarrondo is with Centro Nacional de Desarrollo e Investigación en

Tecnologías Libres (CENDITEL), Mérida – Venezuela. (email:
jvizcarrondo@cenditel.gob.ve)

Web service faults can be classified at three levels [2]: physical,

development and interactions; additionally, each fault type has

a different repair mechanism.

A previous work has proposed a distributed architecture for

the self-healing of faults in the services composition, called

ARMISCOM (Autonomic Reflective MIddleware for

management of Services COMposition). In ARMISCOM, the

fault diagnosis is carried out between the diagnosers present in

each service [17]. Similarly, repair strategies are developed

through consensus among distributed repair services. In this

paper, we present the knowledge representation component of

ARMISCOM, which represents the knowledge needed to

perform the different operations of the middleware;

specifically, it is the knowledge required by the analyzer and

planner components of ARMISCOM.

II. RELATE WORKS

There are two types of failures in web services, the faults in

a service, and the faults in the sequence of calls in a composition

of services. In [2] is proposed a taxonomy of failures in web

services, and describes the perceived effects. In addition, they

propose a correlation of the failures and the reparation

mechanisms. In [9, 10] propose other classification of Fault

types, and define the Recovery action of each one.

At the level of architectures for fault management and

recovery of the web services composition, [3] proposes a

reflective middleware, called SOAR, which is designed as a

centralized structure, in order to monitor and adapt the web

application. The middleware has two levels: the first describes

the basic characteristics of a SOA system (base level), and the

second monitors and adapts the SOA system (meta level). The

reflective part of the middleware executes the dynamic binding

of web services composition, connecting or disconnecting the

services of the SOA application.

In [5] is defined a decentralized architecture that has 2 levels.

The first level defines a local diagnoser for each service of the

composition. The second level is composed of a global

diagnoser, which coordinates the local diagnosers to analyze the

J.L. Aguilar is with CEMISID, Universidad de Los Andes, Mérida,

Venezuela. Additionally, it is Prometeo Researcher at the Escuela Politécnica
Nacional, Quito, and the Universidad Técnica Particular de Loja, Ecuador

(aguilar@ula.ve)

E. Exposito and A. Subias are with CNRS, LAAS, 7, avenue du Colonel
Roche, F-31400, Univ de Toulouse, INSA, F-31400, Toulouse - France (email:

{ernesto.exposito,subias}@laas.fr})

The Component of Knowledge Representation

of ARMISCOM for the Self-healing in Web

Services Composition

J. Vizcarrondo, J. Aguilar, E. Exposito, A. Subias

T

12 LATIN AMERICAN JOURNAL OF COMPUTING - LAJC, VOL III, NO. 2, NOVEMBER 2016

failures. The global diagnoser also implements the mechanisms

for the composition recovery. Each local diagnoser has

chronicles that describe the failure patterns, and communicates

their instantiations to the global diagnoser. The global

diagnoser calculates the sequence of events in the service, to

find the occurrence of an error, according to the chronicles

instanced by the local diagnosers.

 [4] proposes a centralized architecture for web services

reparation. The architecture is composed of three modules: a

module for monitoring and measuring (it determines the QoS

parameters that are relevant), a module of diagnosis and

definition of strategies (it detects the degradation of the system

and builds the reparation plans), and a module of

reconfiguration (it executes the reparation plan). Also, in [6] is

proposed other centralized architecture, based on QoS

monitoring. Furthermore, in [22] is proposed a structure

composed of local diagnosers, which are coordinated by a

global diagnoser that executes the repair tasks.

In the context of autonomic computing, MAPE has been used

to manage failures in web services [11] providing the ability to

self-healing in its invocation (alone web services), but not

considering failures derived in its composition with other

services. Also, other architecture based on MAPE has been

proposed to study the faults on the services composition [12],

but this architecture is completely centralized.

Recently, in [17] we proposed a reflective middleware

architecture for fault management in service composition,

called ARMISCOM, in which each service is overseen by a

Local diagnoser using chronicles. To complete the proposal,

this paper proposes the knowledge representation component of

ARMISCOM. The knowledge representation component is

responsible for the management of the knowledge base required

by our middleware to carry out its Self-healing task.

The Knowledge representation component of ARMISCOM

is composed by distributed chronicles, an ontology to correlate

faults and repair methods, and a metadata for storing repair

methods available for services within the composition. In

previous works, we have designed the distributed chronicles

and implemented a mechanism for the recognition of the

distributed chronicles using the IEP component in OpenESB

and the CQL language [19]. In this paper, we present in detail

the design of a distributed ontology in order to correlate the

fault type in services with the repair methods, based on [2],

which can be used to make inferences about the functional and

non-functional properties of the flows in the composition.

Additionally, because various repair methods can be applied to

solve a given failure, not all can be applied in a given moment

because they are not available, is why, in this paper, we also

define a distributed data structure for storing the possible repair

methods that can be applied at any given time. In this way, this

paper presents the design of the component of the distributed

Knowledge representation of ARMISCOM for its operation, in

order to be used in the self-healing of the web service

composition, which contrast with the commonly used

mechanisms based on centralized architectures.

III. ARMISCOM ARCHITECTURE

ARMISCOM is a reflective middleware architecture for faults

management in the services composition [17]. Reflection is the

ability of our middleware to monitor and modify their own

behavior, as well aspects of its implementation (syntax,

semantics, etc.), allowing the ability to be sensitive to their

environment. Thus, ARMISCOM has a dynamic and adaptive

behavior, fully distributed, in order to have a closer view of the

occurrence of the events that occur in the application.

ARMISCOM is divided into two levels, like classic reflective

middlewares (see Fig. 1) [17]:

 Base Level: A services composition is defined as a set of

calculations and interactions of the services that compose

a SOA application, with a set of rules that determines these

interactions. The base level knows the interactions and its

rules in the choreography. In addition, the base level

observes both the SOA system and the SOA application. In

specific, it monitors the WSDL, UDDI, OWL-S and SCA

elements of a SOA system, and uses FraSCAti platform for

the intersection process of the services choreography.

 Meta Level: it provides the capacity of reflection. It

analyses the message exchange between the services that

are part of the composition and the components of the SOA

system, in order to carry out the introspection. There is a

meta level in each service of the choreography.

The implementation of ARMISCON has been designed

based on the autonomic computing paradigm. The Autonomic

Computing is a computing model inspired on the self-

management in the autonomic nervous system of the human [7].

This system is capable of self-administer, for which defines an

architecture consisting of 6 levels [7]:

 Managed Resource: is any resource of hardware or

software.

 Touch Point: has the sensor and/or actuator mechanisms.

 Autonomic Manager: has the intelligent control loop,

with the tasks automate the self-regulation of the

applications. The autonomic control loop executes four

phases, known as MAPE (Monitoring, Analysis, Planning

and Execution). The monitoring phase gets events/data

from the sensor interface, the analysis phase is executed by

the diagnosers, the planning phase determines how to

repair a fault detected, and the execution phase sends the

commands to the components via the Touch Point.

 Orchestrating autonomic managers: coordinates the

Local Autonomic Managers.

 Manual Manager: creates the human-computer interface

for the autonomic managers.

 Knowledge Sources: provides access to the knowledge of

the middleware.

VIZCARRONDO et al.: THE COMPONENT OF KNOWLEDGE REPRESENTATION OF ARMISCOM FOR THE SELF-HEALING IN WEB SERVICES COMPOSITION 13

Figure 1. ARMISCOM Architecture

In our case, the managed resources and the touch point are

at the base level; the autonomic manager, the knowledge

sources and the choreography autonomic manager are of the

meta level (see Fig. 2) [17]. Furthermore, the autonomic

manager is composed of three components (diagnoser, repairer

and knowledge framework), which are equivalent to the

structure MAPE of an autonomic computing architecture. In

particular, the diagnoser observes the system and analyzes the

failures, and the repairer defines the reparation plans and orders

the execution of repair actions.

In ARMISCON each Autonomic Manager works locally (for

each service), and through the interaction between autonomic

managers is built the diagnosis of failures in the services

composition. In particular, the three meta-level modules that

composed each autonomic manager are [17]:

 Diagnoser (Monitor and Analyze): it inspects the

communication services and performs diagnosis. It is

invoked by the communication analysis services and has a

diagnoser module distributed among the services, to

identify the faults (this module is based on chronicles fault

patterns).

 Repairer (Plan and Execute the reparation): it has

mechanisms for the resolution of the fault problems present

in the composition of services.

IV. KNOWLEDGE FRAMEWORK COMPONENT

The Knowledge Framework provides the interface to allow the

management of knowledge in our middleware. It is composed

by (see Fig. 3):

 The SOA System:

 Web Services Description Language (WSDL): It

describes how the services can be called, what

parameters are expected, and what functionalities are

offered.

 Web Services Choreography Description

Language (WS-CDL): It describes the Web Services

Choreography.

 Semantic Markup for Web Services (OWL-S): It

describes semantically the web services using

ontologies [8], in order to automate tasks of

discovering, invoking, composing, and monitoring of

web services.

Figure 2. ARMISCON autonomic structure

14 LATIN AMERICAN JOURNAL OF COMPUTING - LAJC, VOL III, NO. 2, NOVEMBER 2016

Figure 3. Knowledge Framework components

 Distributed Chronicles: It is used mainly by the

Diagnoser component. In previous works, we have

presented how to represent distributed chronicles, which

define the faults, using CQL language [19].

 Fault-Recovery Ontology: It is used mainly by the

repairer component, in order to define the relationships

between the faults and repair methods.

 Service repair methods: It is used to store the methods

available for the repair service.

A. Distributed Chronicles

In previous work [18, 19], we have designed distributed

chronicles in order to specify the different patterns of the faults

of the web services. For this, in [18] we have extended the

formalism of chronicles, introducing the notion of sub-

chronicles, binding events, etc. Furthermore, we have described

the process of recognition of our chronicles fully distributed.

Specifically, in [18, 19] we have designed a set of event

patterns for recognizing distributed chronicles based on the

fault types proposals in [2]. To implement the chronicles we

have used the IEP component in OpenESB and the language

CQL to define the restrictions between events, in contrast with

the tools normally used for recognizing chronicles, as CRS and

CarDeCRS. The language CQL allows more expressive by

introducing constraints on non-temporal variables [19].

The chronicles are the knowledge about the pattern of

behavior of a SOA application when it has a fault. Each

chronicle defines a fault type, and it is the knowledge that

requires the diagnoser component to detect and diagnose a fault

in the application. In [18, 19] are defined the generic patterns

(chronicles) for each type of fault defined in [2]. The generic

chronicles defined for each fault are:

Physical:

 Unavailable Service Fault

Development:

 Parameters Incompatibility Fault

 Fault due to Interface Might Have Changed

 Fault due to Non-deterministic Actions

 Workflow Inconsistency Fault

Interactions:

 Misunderstood Behaviour Fault (Incorrect Service).

 Response Faults.

 Time-out.

 Misbehaving Execution Flow Fault.

 Incorrect Order.

 Violation of the Service Level Agreement (SLA) and

Quality of Service (QoS).

In this way, the knowledge about the behavior of a SOA

application with fault is defined using chronicles. Our

middleware customizes these generic chronicles according to

the specific characteristics of the SOA application supervised

B. Fault-Recovery Ontology

The Fault-Recovery ontology allows correlating faults in the

composition of services with available methods for correcting

faults in the SOA application. The ontology is the main element

of the repairer component, because using it the repairer

analyzes the methods of correction of the fault diagnosis by the

diagnoser component. The repairer component reasons about

the possible methods of corrections of a fault, using the

knowledge about that describes in the ontology.

This ontology about the methods the reparation of each fault

type in a SOA application is based on the work [2], where they

carried out a survey over this topic. The ontology is

implemented as a web service that can be accessed by all

repairers in our middleware.

Now, we describe the concepts and relationships among

them of our ontology. We start describing the concepts of the

fault types, then the concepts of the reparation methods, and

finally, the generic structure of our ontology where we describe

the relationships among the concepts.

VIZCARRONDO et al.: THE COMPONENT OF KNOWLEDGE REPRESENTATION OF ARMISCOM FOR THE SELF-HEALING IN WEB SERVICES COMPOSITION 15

C. Concepts about Fault Types in the Web Services

Composition

In [2] have described a taxonomy, which classifies the

failures in the services composition at three levels: physical,

development and interactions. This is the base of our ontology

to define the concepts about the fault types.

Physical Faults: Failures are due to the environment where

the service (infrastructure) operates and are unrelated to the

functionality of the service, causing the service to be considered

unavailable (Service or network connection to the service is

down). The symptom is that it is not possible to invoke the

service (fault due to Unavailable Service).

Development Faults: At the time of conception or

development of services and/r composition, may emerge faults

that are not considered by the developer of the services and their

composition, these types of fault are:

 Parameters Incompatibility Fault: This failure arises when

a service is invoked with incorrect values and/or data types

of the arguments, with respect to the types and restrictions

defined in the WSDL1 document.

 Fault due to Interface Might Have Changed: The type of

data in the interface of some service Si, which is part of the

composition, is modified, so that an incompatibly of

parameters is originated when Service Si is newly invoked.

The difference of this fault with respect to parameters

incompatibility fault is that the Si service was previously

invoked without failure with the original parameters.

 Fault due to Non-deterministic Actions: This failure occurs

when the value of the response of a service is not consistent

with the value that should produce the service in the

choreography. This kind of failure is extremely rare and is

usually because to generate a correct response, the service

must previously to invoke another operation in the same

service.

 Workflow Inconsistency Fault: In this type of fault the

logic in the flow is not correct (Workflow Inconsistency),

a service cannot be invoked because its interface does not

match the description in the composition. The diagnosis of

this type of failure is very complicated, because it is

confused with a physical fault (fault due to Unavailable

Service).

Interaction Faults: In service composition, interactions

occur between services, which can cause faults. In these cases,

the types of faults are:

 Misunderstood Behaviour Fault (Incorrect Service): One of

the services in the flow of the composition does not

produce the expected results. That is not due to that the

service does not work properly (it could perform its

operations the best possible), but the result is not as

expected. To show an example of this, assume that when a

service is invoked is expected to return the temperature

measured hourly, and the service returns the temperature

measured every two hours.

 Response Fault: When the invocation of a service is

performed produces a failure in its operation, this may be

due to infrastructure problems, authentication or internal

logic of the service.

 Time-out: When is described the invocation of a service in

the composition, a time period is specified for the response,

otherwise a timeout event is generated that allows abort the

services composition and avoid other faults in the

composition.

 Misbehaving Execution Flow Fault: This fault occurs when

a service group or individual service in the composition not

yield the expected results in its implementation. They work

correctly, but they are not coupled with the other services

in the composition, or the result that generate is erroneous

within the composition.

 Incorrect Order: Incorrect order failure is because the

messages used to interact with the services in the

composition arrive in a different order of time than

expected.

 Violation of the Service Level Agreement (SLA) and

Quality of Service (QoS): Non-functional properties of the

services are expressed in terms of QoS and SLA. SLAs are

used to describe that capabilities should have the service,

and QoS is used to measure the quality of the service based

on the response time and quality of the information

generated. This fault is generated when the SLA and/or

QoS are violated.

D. Concepts about Repair methods in the Services

Composition

Once a problem is identified in a services composition, it is

necessary to perform a set of actions for the services and/or

composition in order to return the system to normal behavior.

Thus, different repair methods have been proposed to repair the

faults in the composition [22, 23], which are applied depending

on the level at which the failure occurs:

Service: These repair methods are applied only at the service

level. Some methods of repair of this type are.

 Retry: It is applied when a service is temporarily

unavailable. In this case, it is suspending the current

service execution and the service invocation is retried with

known parameters until it becomes available.

 Substitute a Service: Is to replace the current service by

an equivalent. The compatibility assessment is performed

by comparing the interface functionality (WSDL), quality

parameters (QoS) and service contracts (SLA).

 Modify parameters incompatible: At the time invoking

or receiving a service, the message exchanged is

incompatible with the definitions of WSDL. The repair

involves placing an intermediate service, which is

responsible for modifying the input or output messages

among the services.

 Reassign: This repair method is used when the service

does not meet the QoS and/or SLA parameters, the action

to take is to reassign the service to a new server to solve the

problem. Unlike the substitution of service, this repair

method does not seek a new equivalent service, it invokes

the same service in a new location.

 Skip a Service: Is to jump a service that is part of the

composition, which can be running or has not yet been

invoked, to continue the execution flow of the composition.

16 LATIN AMERICAN JOURNAL OF COMPUTING - LAJC, VOL III, NO. 2, NOVEMBER 2016

Flow: Is to change the execution flow of the composition.

 Substitute a Flow: It is used to faults in some level of the

composition. This method consists in replacing part of the

flow for equivalent flows, adding new or subtracting

services.

 Redo: Consists of repeating the invocation of a piece of the

flow of the composition, using different parameters taken

from previous executions that have worked properly.

 Alternative behaviors: is to define an alternative flow to

follow the composition in the case of a failure.

 Skip a flow: Is to jump a part of the flow in the

composition, which can be running or has not yet been

invoked, to continue the execution flow of the composition.

 Change Settings: Is to change the value of a process

variable. This method is used when needed to re- execute a

portion of the flow, but using different values of the process

variables.

E. Relationships in our Fault-Recovery Ontology

The design of our ontology contains two classes, called Fault

and Repair Strategies (see Fig. 4), which represent the concepts

of failure and repair methods described in sections 4.A and 4.B.

Thus, the Fault class has a property called Has_repair_method,

which allows us to assign elements of the class Repair

Strategies to each type of fault. In this way are matched the

failures in the services composition with the mechanisms to

solve the faults. It is a superclass of the classes Physical,

Development and Interaction. Also, the class Repair Strategies

has a property, called Solve_fault, which performs the inverse

operation to Has_repair_method, and it is a superclass of the

classes Service and Flow.

The individual instances developed in our ontology are

shown in Table I. Repair methods for each failure shown in

Table I should be taken as a possible set of actions to run to

solve the fault, this selection should be done sequentially

among the methods available on site. That is, the repair

component must try to solve the fault with the first action

available (best case), and if with this one is not possible to solve

the problem, it continues sequentially with the next action, until

repair the fault or reach the last option (worst case). For

example, for the failure of unavailable service, the first action

is to try to place the service again available (redo service (best

case)), in case it cannot be performed, the second action is to

try reassign service on another site, if it cannot solve the

problem, it is necessary to try the service substitution by an

equivalent, and so until repair the fault or test the last action

(skipFlow service (worst case)).

We have implemented our ontology using the protégé1 tool,

which is based on the Web Ontology Language (OWL).

Subsequently, the repair component of ARMISCOM invokes a

service, which reasons and makes inferences about the repair

mechanisms according to the failures present in the

composition, using our ontology and the inference motor

FACT++2 of protegé.

1 Protégé is a free, open source ontology editor. It provides a graphic user

interface to define ontologies. This application is written in Java.

Figure 4. Fault-Recovery ontology structure

Thus, this part of the Knowledge component is implemented

by a web service which uses our ontology and the reasoner

FACT++. The relationships between the concepts of faults and

repair methods in the ontology generated in protegé are shown

in Fig. 5

F. Setting the Services of repair methods (Metadata about

repair methods)

As shown in the previously proposed ontology, a fault in the

composition may have different repair methods. Although some

resolution mechanisms can be setting in real time as redo,

parametersUpdate, skip service, etc., others need to be

previously setting. For example, the method “substitute a

service” needs previously to identify the equivalent services,

using like knowledge base the SOA system (UDDI, WSDL,

OWL-S), because search equivalent services takes some time

(it cannot be implemented in real time). Additionally, not all

correction mechanisms may be used in some cases/sites, then it

is necessary to define a knowledge base that allows

ARMISCOM chooses the reparation mechanisms for each

case/site.

 In these cases, it is necessary to define a mechanism that

allows the middleware has stored alternative flows for its repair

mechanisms, in order to provide a consistent and quick

reparation of a SOA application. Distributed repairs in

ARMISCOM are continually looking for equivalent services to

replace the service that is responsible when there is a

malfunction. Get equivalent services often is not an easy task,

and in many cases it is necessary to modify the execution flow

of the SOA application (add or remove services). Each repair

component continuously updates the metadata with new

services and equivalent flows. Because in ARMISCOM the

component responsible for performing failure analysis

conceives the composition as a stream of events, it is necessary

to expand the representation of sub-flows as a sequence of

events. In this way, a SOA application can be viewed as a

sequence of events E, which can be decomposed into sub-

regions or sub-flows Ri of events Eaci:

2 FaCT++ is a tableaux-based reasoner for expressive Description Logics

(DL) developed by the University of Manchester, It covers OWL and OWL2
languages.

VIZCARRONDO et al.: THE COMPONENT OF KNOWLEDGE REPRESENTATION OF ARMISCOM FOR THE SELF-HEALING IN WEB SERVICES COMPOSITION 17

TABLE I

INDIVIDUAL INSTANCES IN OUR FAULT-RECOVERY ONTOLOGY

SubClass individual instance Has_repair_method

physical unavailable redo

 reassign

 substitute

 substituteflow

 skipService

 skipFlow

developmen

t

parameterIncompatibility CompleteMissingParamete

rs

 substitute

 substituteflow

 skipService

 skipFlow

interfaceMightHaveChanged CompleteMissingParamete
rs

 substitute

 substituteflow

 skipService

 skipFlow

DueToNonDeterministicActio
ns

 parametersUpdate

 substitute

 substituteflow

 skipService

 skipFlow

workflowinconsistency substituteflow

 skipFlow

interaction misunderstoodBehaviourFault parametersUpdate

 substituteflow

 skipFlow

responsefault substitute

 substituteflow

 skipService

 skipFlow

timeout reasign

 retry

 substitute

 substituteflow

 skipService

 skipFlow

misbehavingExecutionFlow redo

 substituteflow

 skipFlow

IncorrectOrder substituteflow

 skipFlow

QualityOfService reasign

 substitute

 substituteflow

ServiceLevelAgreement parametersUpdate

 reasign

 substitute

 substituteflow

Application(E) = UNIONi=1, n(Ri(Eaci)) (1)

Where,

 Eaci are a set of events, such that Eaci ={Ek,,..., El} occur

in the region i.

 UNION is a predicate that defines the union of distributed

events (Eaci) in the n regions.

Suppose the SOA application shown in Fig 6. This

application can be decomposed into regions associated with

event services, such that:

Application = UNION{R1(E1), R2(E2, E3, E9),

R3(E4, E5), R4(E6, E7), R5(E10, E11), R6(E8, E12,

E13)} | ∀k,m < 13 y ∀i,j < 6, i ≠ j, EkRi y EmRj,

then, Ri(Ek) ∩ Rj(Em) = ∅

(2)

Based on regions R1, R2, R3, R4, R5, R6, it is possible to find

equivalent regions R'1, R'2, R'3, R'4, R'5, R'6. Thus, to manage

the equivalent regions of the SOA application within

ARMISCOM, we need to define a metadata to store repair

mechanisms in each case. Repairing a flow of the composition

is to find an equivalent region that allows mapping the initial

event E0 and final EF, that is, one must know the stored

equivalent regions related to each repair mechanism.

For that, in ARMISCOM is defined a metadata for each

service with the repair methods that can be used in equivalent

region (see Table II). In Table II, each attribute is defined as:

 Weight: Represents the order in which methods should be

extracted, it can be defined based on some kind of

optimization.

 RepairMethod: Represents the method of reparation

available.

 Flow: defines the sequence of events (flow) which are

affected during the reparation.

 Flow_init: Represents the first event on the services

composition, in the which should begin the reparation.

 Flow_end: Represents the last event on the services

composition, in the which should be completed the

reparation.

With this metadata, ARMISCOM can define the repair methods

available for each case/site. The metadata works as follows:

suppose that is necessary to implement the repair method

"substitute flow" from event 5 until event 9, then we need to

perform the next search: WHERE RepairMethod = "substitute

flow" AND Flow_init = 5 AND Flow_end = 9, return data BY

Weight. Additionally, because the query could not find any

method for the desired flow to modify, the repair component

could perform a new search based on a new flow (Eg: Flow_init

= 4 and Flow_end = 9 and the same method "substitute flow"

describe.
TABLE II

 METADATA FOR EACH SERVICE WITH THE REPAIR METHODS

Reparation methods available in a site (service)

Weight RepairMethod Flow Flow_init Flow_end

Figure 6. SOA application decomposed into events region

18 LATIN AMERICAN JOURNAL OF COMPUTING - LAJC, VOL III, NO. 2, NOVEMBER 2016

Physical Faults

Development Faults

Interaction Faults

Figure 5. Relationships among the concepts in our Fault-Recovery ontology.

VIZCARRONDO et al.: THE COMPONENT OF KNOWLEDGE REPRESENTATION OF ARMISCOM FOR THE SELF-HEALING IN WEB SERVICES COMPOSITION 19

V. CASE STUDY

In this test case we will use a common example of e-

commerce SOA implementation (see Fig. 7), which comprises

three business processes (which will constitute our services):

 Shop: it is the place where users purchase products.

 Supplier: it offers products to the shop, but needs to verify

their availability before to response.

 Warehouse: it is the place where the products are stored

by the providers. This service has a service level agreement

(SLA)3 with Supplier, which is that at least one product

from the list should be returned4. It can interact with other

warehouses of the company, in order to search products. In

this way, it can answer with at least one product, when it

has not in the local warehouse.

Now, we describe a classical behavior of this application:

(1) SuppListOut: Shop provides the list of products required

to the supplier.

(2) SuppItemIn: Supplier checks its deposit invoking the

Warehouse process.

(3) SuppItemOut: Warehouse provides the list of products in

the deposit to the Supplier.

(4) SuppListIn: The Supplier informs the products that can

provide to the Shop.

A. Some elements of the knowledge component of

ARMISCOM in this case

In the case of chronicles, Fig. 8 and Table III define the

distribution of the events among the diagnosers (sites) of the

composition, which is a generic chronicle for this application

(connecting all events that may occur in it). With this generic

chronicle, can be built the specific chronicles to detect each

abnormal situation.

Based on the patterns of the generic chronicles for the

different types of faults of a SOA application proposed in [18,

19], the knowledge component builds the specific distributed

chronicle for each fault: Quality of Service, Timeout, etc. One

example of one of these chronicles is shown in Table IV in the

cases of Timeout and Quality of Service.

Figure 7. Example of choreography (e-commerce).

Figure 8. Sequence event divided by diagnoser in E-Commerce case.

3 SLA is a contract between the service consumer and service provider and

define the level of service

TABLE III

 EVENT DESCRIPTION DIVIDED BY DIAGNOSER IN E-COMMERCE CASE

Shop

 E1: Shop sends

product orders
to the

Supplier.

 E13: Shop
receives the

list of

products.

 E14: Shop

makes
products

payment.

Supplier

 E2: Supplier receives

product orders

 E3: Supplier checks

the products in the

catalog.

 E4: Supplier provides

product orders to
Warehouse for the

products that it has not.

 E10: Supplier receives
the response of the

products.

 E11: Supplier makes

the invoice.

 E12: Supplier responds

to shop with products

shipped.

Warehouse

 E5: Warehouse receives

the request of the
Supplier.

 E6: Warehouse searches

products (maybe it
invokes other

warehouses).

 E7: Warehouse updates
inventory.

 E8: Warehouse packs and
ships products to the

buyer.

 E9: Warehouse provides

the answer about the list
of products in the deposit

to the Supplier.

Tmeout:

 Subchronicle Supplier:

 Input:

 E4 is an event that is maintained by 15000 ms and

ENOEVENT: is a stream produced by the no

response from the warehouse. Both E4 as

ENOEVENT have no temporal attributes id (is an

identifier used to ensure that the events

corresponding to the invocation of the application

itself), time (generated when the event occurs)

and lp (products list) .

 Constraint:

 The events should have the same id, and the time

difference between ENOEVENT and E4 must be 5000

ms.

 Output

 Emit a bidding event call EBTimeout to Warehouse

diagnoser:

 Subchronicle warehouse:

 Input:

 E5, E6 and E7 are events maintained by

15010, 15008 and 15006 respectively;

EBTimeout is a stream. All have the same

attributes id, time and lp, as in Subchronicle

Supplier.

 Constraint:

 The events must be the same id and the

arrival sequence of the events is established.

 Output:

 Emit an event to repair, with fault

information. To this, we have added

additional information to the event, to tell the

repairer the name and type (timeout) of the

fault, and the affected flow (flow_init = 5 and

flow_end = 9, the affected flow are a five

services).

4 This SLA define how message delivery is guaranteed, the Warehouse delivery
messages in the proper order (least one product in order)

20 LATIN AMERICAN JOURNAL OF COMPUTING - LAJC, VOL III, NO. 2, NOVEMBER 2016

TABLE IV
DISTRIBUTED CHRONICLES FOR TIMEOUT FAULT AND QUALITYOFSERVICE IN CQL

Distributed Chronicle: Timeout

Subchronicle Supplier Timeout {

SELECT

 ISTREAM(

 id => E4.id,
 event => 'EBTimeout',

 time => E10.time,

 lpsupplier => E10.lp,
 lp => E4.lp,

 to => 'Diagnoser warehouse',

)

FROM

 E4[15000],

 ENOEVENT[now]

WHERE

 ENOEVENT.time >= E4.time + 5000 AND

 ENOEVENT.id = E4.id
}

Subchronicle Warehouse Timeout {

SELECT

 ISTREAM(

 id => E5.id,
 fault => 'timeout',

 faulttype => 'N/A',

 time => E4.time,
 lp => E4.lp,

 flow_init => 5,

 flow_end => 9,
 to => 'Repair warehouse',

)

FROM

 E5[15010],

 E6[15008],

 E7[15006],
 EBTimeout[now]

WHERE

 E6.time > E5.time AND
 E7.time – E6.time > 4 AND

 E6.id = E5.id AND

 E7.id = E6.id AND
 EBTimeout..id = E7.id
}

Distributed Chronicle: QualityOfService: Delay

Subchronicle Supplier Delay0 {

SELECT

 ISTREAM(

 id => E4.id,

 event => 'EBDelay',
 time => E10.time,

 lp => E4.lp,
 to => 'Diagnoser supplier',

)

FROM

 E4[5500],

 E10[now]

WHERE

 E10.time - E4.time >= 2000 AND

 E10.time - E4.time < 5000 AND

 E10.id = E4.id AND
}

Subchronicle Supplier Delay1{

SELECT

 ISTREAM(

 id => EBDELAY1.id,

 fault => 'QualityOfService',
 faulttype => 'Delay',

 time => E10.time,
 lp => E4.lp,

 flow_init => 8,

 flow_end => 8,

 to => 'Repair supplier',

)

FROM

 EBDELAY[15500],

 EBDELAY1[now],

WHERE

 count(EBDELAY.id) + 1 > 2 AND

 EBDELAY.id <> EBDELAY1.id
}

Quality of Service (Delay):

 Subchronicle Supplier 1:

 Input:

 E4 is an event that is maintained by 55000 ms and

E10 is a stream. They have attributes id, time and

lp.

 Constraints:

 The difference in the time of events E4 and E10

should be between 2000 and 5000 ms.

 Output:

 Emit a bidding event, called EBDelay, to Supplier

diagnoser.

 Subchronicle Supplier 2:

 Input:

 EBDelay is an event maintained by 15500 ms and

EBDelay1 is a stream, both have attributes id, time

and lp.

 Constraint:

 The amount of received events must be greater

than 2

 Output:

 Emit an event to repair in supplier, with fault

information. To this, we have added additional

information to the event, to tell the repairer the

name and type of the fault (name = Quality Of

Service type = Delay), and the affected flow

(flow_init = 8 and flow_end = 8, the affected flow

is a unique service).

Additionally, the service of the repair methods available at

each site, and their metadata, are shown in Table V.

VIZCARRONDO et al.: THE COMPONENT OF KNOWLEDGE REPRESENTATION OF ARMISCOM FOR THE SELF-HEALING IN WEB SERVICES COMPOSITION 21

Thus, the supplier only has a repair mechanism

(substituteflow) affecting the flow from the event 5 until the

event 9 (repair E5, E6, E7, E8 and E9 operations), On the

contrary, warehouse has four repair mechanisms:

parametersUpdate (repair E6 operation),

CompleteMissingParameter (repair E5 operation),

substituteflow (repair E8 operation) and substituteflow (repair

E7 operation).

B. Testing the e-commerce application using the Knowledge

Component

To verify the operation of component of knowledge of

ARMISCOM, we implement the application of E-commerce in

OpenESB and connected the distributed diagnoser and repair

modules. At the Warehouse service we have added one

additional operation to easily induce delay faults and to verify

its full operation:

setTuneDelay: Used to induce delay time in the warehouse

service (initial delay is 0 ms, no delay). Thus, three invocations

of the application are performed (id = {1, 2, 3}) where

TuneDelay is setting with a delay of 3000 ms (induces multiple

delay fault). Subsequently is invoked again the warehouse

service (id = 4) with a TuneDelay of 6000ms what would cause

a timeout in e-commerce application. The results are shown in

Table VI.

TABLE V
AVAILABLE METHODS TO REPAIR E-COMMERCE APPLICATION

reparation methods available in Supplier

Weight RepairMethod Flow Flow_init Flow_end

1 substituteflow E6, E7, E8, E9 5 9

 reparation methods available in Warehouse

Weight RepairMethod Flow Flow_init Flow_end

1 parametersUpdate E6 6 6

1 CompleteMissingParameter E5 5 5

1 substituteflow E8 8 8

1 substituteflow E7 7 7

TABLE VI

KNOWLEDGE SOURCE USED IN QUALITY OF SERVICE (DELAY) AND TIMEOUT FAULTS

Fault Distributed Chronicle Diagnosis

Response

Fault-Recovery Ontology Response Service repair Selection Response

Quality Of

Service

(Delay)

<?xml version="1.0" encoding="utf-
8"?>

<msgns:StreamOutput4_MsgObj

xmlns:msgns="supplierChronicle_iep
">

<id>3</id>

<fault>QualityOfService</fault>
<faulttype>Delay</faulttype>

<time>1408573740066</time>

<lp>10</lp>
<flow_init>8</flow_init>

<flow_end>8</flow_end>

<Timestamp>2014-08-
20T17:59:05.927-

04:30</Timestamp>

</msgns:StreamOutput4_MsgObj>

<?xml version="1.0" encoding="utf-8"?>
<S:Envelope

xmlns:S="http://schemas.xmlsoap.org/soap/

envelope">
 <S:body>

 <ns2:getRepairMethodResponse

xmlns:ns2="http://ws/">

<return>reassign;substitute;substituteFlow</

return>
 </S:body>

</S:Envelope>

<?xml version="1.0"
encoding="utf-8"?>

<msgrepair:supplier>

<methodrepair>substituteflow</me
thodrepair>

<flow_init>8</flow_init>

<flow_end>8</flow_end>
</msgrepair:supplier>

Timeout <?xml version="1.0" encoding="utf-

8"?>

<msgns:StreamOutput2_MsgObj
xmlns:msgns="warehouseChronicle_i

ep">
<id>4</id>

<fault>timeout</fault>

<faulttype>N/A</faulttype>
<time>1408573625710</time>

<lp>2</lp>

<flow_init>5</flow_init>
<flow_end>9</flow_end>

<Timestamp>2014-08-

20T17:57:06.025-
04:30</Timestamp>

</msgns:StreamOutput2_MsgObj>

<?xml version="1.0" encoding="utf-8"?>

<S:Envelope

xmlns:S="http://schemas.xmlsoap.org/soap/
envelope">

 <S:body>
 <ns2:getRepairMethodResponse

xmlns:ns2="http://ws/">

<return>reassign;retrysubstitute;substitutefl

ow;skipService;skipFlow</return>

 </S:body>
</S:Envelope>

<?xml version="1.0"

encoding="utf-8"?>

<msgrepair:supplier>
<methodrepair>substituteflow</me

thodrepair>
<flow_init>5</flow_init>

<flow_end>9</flow_end>

</msgrepair:supplier>

22 LATIN AMERICAN JOURNAL OF COMPUTING - LAJC, VOL III, NO. 2, NOVEMBER 2016

As shown in Table V, ARMISCOM was able to diagnose and

correct Quality of Service (Delay) and Timeout faults. In the

case of Quality of Service (Delay), the supplier diagnoser

recognizes chronicle and emits the event to its repairer (fault:

QualityOfService, fault type: Delay, flow_init = 8 and

flow_end = 8, see first column). With this information the

repairer performs inference in the Fault-Recovery ontology for

the QualityOfService fault, and returns the possible solution

methods to be implemented to correct the fault (reassign,

substitute and substituteFlow, see second column). Then, the

repair performs the search in metadata: first it searches method

reassign, after substitute, and because they are not

implemented, subsequently seeks substituteFlow with flow_init

= 8 and flow_end = 8 (taken from Distributed Chronicle

Diagnosis Response). This one is available to be applied like

method to solve the fault. The diagnosis and correction of the

Timeout fault is similar. First, the Warehouse Diagnoser

recognizes the chronicle and emits the event to its repairer

(fault: timeout, fault type: N/A, flow_init = 5 and flow_end =

9, see first column). The repair carries out an inference about

the fault in the Fault-Recovery ontology, and returns the

possible methods to implement (reassign, retrysubstitute,

substituteflow, skipService and skipFlow). Finally, it performs

a search in the metadata of the Warehouse repairer to find

possible repair mechanisms to implement, the repair

mechanism “substituteflow”, for flow: flow_init = 5 and

flow_end = 9, is the only one available.

C. Results Analysis

In the case study, we observe how the knowledge component

of ARMISCOM uses hybrid knowledge to manage the different

aspects necessary to guarantee the fault tolerance of a SOA

application. The different patterns of distributed chronicle are

used to diagnose the failures (in this case, we have shown the

Quality Of Service (Delay) and Timeout chronicles). When a

distributed chronicle is recognized the diagnoser produces a file

with the diagnosis, which is read by the repair component. This

component uses the Fault-Recovery Ontology to reason about

the repair methods that could be used to solve the fault. Finally,

with the identification of the part that has been affected

(event_init and event_end) and the repair mechanisms stored in

the metadata, ARMISCOM can get the best available method

to solve the fault in real time.

Our extension of the formalism of chronicles, facilitates the

interactions between local diagnosers, without need of a

coordinator to manage their interactions. This represents a

remarkable improvement in communication and scalability

level, with respect to previous studies [13, 14, 15, 16]. In

addition, its implementation is very natural in the case study (a

recognizer by service).

Some works store subflows modeling them as a set of

services that are interconnected with each other, using Petri nets

or graphs connections [3, 4, 6, 12, 22, 24, 25, 26, 27, 28].

Additionally, they replace sub-flows in the composition of

services, have architectures that allow them to previously find

alternate sub-flows, to respond to faults present in the

composition in real time. Thus, the mechanisms consist of

modeling a SOA application as a graph or path, which can be

decomposed into sub-graphs, and achieve equivalent flows

based on a similarity criterion, according to the functional and

non-functional (e.g. QoS).

In this work, flows have been modeled as events with time

constraints, to be in line with the chronicle paradigm.

Additionally, the metadata can store the information that

characterizes the regions of the events (Initial Flow Event

(Event_init), sequence of events that compose it (Transition),

Final Event Flow (Event_end)), which defines the region where

must be applied the repair strategy (RepairMethod), and

determines the equivalent regions. All this information can be

used to select the best option, in order to be effective when a

service must be replaced.

Additionally, we have designed a repair module that allows

us to infer the repair strategies for failures in the services

composition, taking into account context information based in

the fault and in the flow composition problem, which is

performed at runtime. In previous words [9, 10] have correlated

recovery actions with fault type, in our case we use a fault-

recovery ontology to correlate the faults with the recovery

actions, which was implemented as a web service using BC Sun

Java EE SE, to encapsulate the JAVA language as a service, and

the inference engine FACT++. The various queries performed

at service ontology for each failure showed the expected

response (repair methods to use) in the reparations. This

ontology can increase (e.g. using ontological learning

approaches) to include new faults, reparation mechanisms, etc.

Also, the metadata provides to ARMISCOM multiple recovery

plans, to address the flow fault in the composition of web

services. The case study showed how to store different repair

mechanisms and to make the request to the meta-data, in order

to find the mechanisms best suited to the part affected (which

failed). In this way, ARMISCOM can be customized very

easily, because can deduce the appropriate repair method to be

used for each case.

VI. CONCLUSIONS

We have proposed a reflective middleware architecture for

autonomic management of service-oriented applications [17].

ARMISCOM is fully distributed through the services of the

SOA application, it is instanced in each service, for both the

diagnosis and the reparation of faults of services and of

compositions. In order to support this architecture, in this paper,

we have designed the knowledge management component of

our middleware. This Knowledge is composed of the

information from SOA system, of Distributed chronicles which

describe the behavior of a SOA application with failures, the

distributed metadata which describes the repair methods, and of

a Fault-Recovery Ontology.

In the case of distributed chronicles, previously, in [18], we

have extended the formalism of chronicles, with the definition

of the notion of sub-chronicles, binding events, among others.

Our extension contrasts with the semi-centralized and

decentralized chronicle approaches that have been developed

previously.

Additionally, chronicles make possible to identify the parts

affected by the faults, adding new attributes to the events as

fault name, fault type, part of the flow affected by the failure

(flow_init and flow_end). With this information, in this paper,

VIZCARRONDO et al.: THE COMPONENT OF KNOWLEDGE REPRESENTATION OF ARMISCOM FOR THE SELF-HEALING IN WEB SERVICES COMPOSITION 23

we have described as ARMISCOM determines the equivalent

regions, which are sub-flows as events with time constraints. In

this way, ARMISCOM can characterize regions with fails to be

replaced, which defines the region where must be applied the

repair strategy (RepairMethod),

In the case of the Fault-Recovery Ontology component, it has

been implemented as a web service, allowing correlated faults

present in the composition with repair mechanisms using an

inference motor. The Fault-Recovery Ontology component has

been developed as an ontology composed of super-classes,

classes, properties and individuals using OWL language, which

describe a taxonomy about the mechanisms of reparation of

faults for a SOA application. This ontology can be enriched in

the future to allow inferences about the more complex

situations, using functional and non-functional properties of

services.

Finally, we have proposed a metadata about each repair

methods available at each site, which must be used by the repair

component. Using this metadata the repairer deduces the

appropriate repair method for each case. Metadata provides

representation of multiple recovery plans available at different

instances of flows (web services) of the composition of

services, using the concept of equivalent regions, which allows

to calculate the suitable plan to implement in the case of a fault.

Our middleware requires a knowledge component which

manages hybrid knowledge, in order to properly infer the

portion of the flow that has failed and find the closest resolution

mechanism. This architecture for autonomic management of

service-oriented applications is based on hybrid knowledge,

according to the needs of each MAPE component. The

utilization of the hybrid knowledge (different sources of

knowledge) defined in this paper, is one of the advantages of

our approach. Additionally, the component of the distributed

Knowledge representation designed in this paper, allow the

self-healing web service composition fully distributed,

representing another significant improvement, in order to

reduce the large exchange of messages and to minimize the

calculation required in the diagnosis and the reparation, which

are the main problems of the centralized approaches [3, 4, 6, 12,

22, 25, 26, 27, 28].

Some improvements are possible. For example, the metadata

are defined by an expert. However, this task could be delegated

to another component that automatically build it. An example

is to use another ontology to infer services and flow

equivalences, this would work as a robot that is continuously

running and updating the metadata, which can be enriched

using the weight field for indicating the degree of equivalence.

Also, the ontology can be extended to describe features that

allow to infer the services of reparation more exactly

REFERENCES

[1] Czajkowski, K., Fitzgerald, S., Foster, I., and Kesselman, C.: "Grid
Information Services for Distributed Resource Sharing". 10th IEEE
International Symposium on High Performance Distributed Computing,
pp. 181--184. 2001.

[2] Chan, K., Bishop, J., Steyny, J.,Baresi, L., and Guinea, S.:, "A Fault
Taxonomy for Web Service Composition", Service-Oriented Computing
Workshop, pp. 363-375, 2007.

[3] Huang, G., Liu, X., and Mei, H.: "SOAR: Towards Dependable Service-
Oriented Architecture via Reflective Middleware". International Journal
of Simulation and Process Modelling, vol. 3, no. 1/2, pp. 55-65, 2007.

[4] R. Halima, E. Fki, K. Drira and M. Jmaiel, "Experiments results and large
scale measurement data for web services performance assessment". IEEE
Symposium on Computers and Communications, pp. 83-88, 2009.

[5] WS-Diamond project, "WS-Diamond, IST-516933, Deliverable D4.3,
Specification of diagnosis algorithms for Web Services – phase 2",
http://wsdiamond.di.unito.it/.

[6] Poonguzhali, S.,, Sunitha, R., and Aghila, G.: “Self-Healing in Dynamic
Web Service Composition". International Journal on Computer Science
and Engineering, vol. 3, no. 5. pp. 2054-2060, 2011.

[7] IBM Corporation. "An architectural blueprint for autonomic computing".
Autonomic Computing”, Fourth Edition, http://www.ginkgo-
networks.com/IMG/pdf/AC_Blueprint_White_Paper_V7.pdf, 2006.

[8] Chiribuca, D., Hunyadi, D. and Popa, E.: “The Educational Semantic
Web”, 8th WSEAS International Conference on Applied Informatics and
Communications, pp. 314-319, 2008.

[9] Fugini, M.G., Mussi, E.: Recovery of Faulty Web Applications through
Service Discovery. 32nd International Conference on Very Large
Databases, pp. 67-80, 2006.

[10] Ardagna, D., Cappiello, C., Fugini, M., Mussi, E., Pernici, B., andPlebani,
P.: Faults and recovery actions for self-healing web services. 15th Int.
World Wide Web Conf., 2006.

[11] Sherif, A.; and Amir, Z.: Towards autonomic web services: achieving
self-healing using web services. 2005 Workshop on Design and evolution
of autonomic application software, Pages 1 – 5, 2005.

[12] Poonguzhali1, S.; JerlinRubini, L.; Divya, S.: “A Self-Healing Approach
for Service Unavailability in Dynamic Web Service Composition”.
International Journal of Computer Science and Information
Technologies, vol. 5 Issue 3, p 4381, 2014.

[13] WS-Diamond: WS-Diamond, IST-516933, Deliverable D4.3,
Specification of diagnosis algorithms for Web Services – phase 3. Version
0.5, 2008.

[14] Cordier, M.O., Krivine, J., Laborie, P., Thi ́ baux, S.: “Alarm processing
and reconfiguration in power distribution systems”. IEA-AIE’98. pp. 230–
240, 1998.

[15] Cordier, M.O., Dousson, C.: “Alarm driven monitoring based on
chronicles”. Safeprocess’2000. Pp 286–291, 2000.

[16] Quiniou, R., Cordier, M.O., Carrault, G., Wang, F.: “Application of ilp to
cardiac arrhythmia characterization for chronicle recognition”. ILP’2001.
pp. 220–227, 2001.

[17] Vizcarrondo, J., Aguilar, J., Exposito, E., Subias, A.: “ARMISCOM:
Autonomic Reflective MIddleware for management Service
COMposition”. 4th Global Information Infrastructure and Networking
Symposium (GIIS 2012), IEEE Communication Society, 2012.

[18] Vizcarrondo, J., Aguilar, J., Exposito, E., Subias, A.: “Crónicas
Distribuidas para el Reconocimiento de Fallas”, Revista Ciencia e
Ingeniería. vol. 36, no. 2, pp. 73-84, 2015.

[19] Vizcarrondo, J., Aguilar, J., Exposito, E., Subias, A.: "Building
Distributed Chronicles for Fault Diagnostic in Distributed Systems using
Continuous Query Language (CQL)", International Journal of
Engineering Development and Research (IJEDR), vol.3, no. 1, pp.131-
144, 2015

[20] Aguilar, J. “An artificial immune system for fault detection”, Intl. Conf.
on Industrial, Engineering and other Applications of Applied Intelligent
Systems, pp. 219-228, 2004.

[21] Aguilar, J., Hernández, M. “Fault tolerance protocols for parallel
programs based on tasks replication", 8th Intl Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems,
pp. 397-404, 2000.

[22] Ardissono L., Console L., Goy A., Petrone G., Picardi G., Segnan M,
"Enhancing Web Services with Diagnostic Capabilities". Third European
Conference on Web Services, pp. 182-191, 2005.

[23] Fugini ,M. Mussi G: “Recovery of Faulty Web Applications through
Service Discovery”. 32nd International Conference on Very Large
Databases, pp. 67-80, 2006.

[24] WS-Diamond: WS-Diamond, IST-516933, Deliverable D5.1,
Characterization of diagnosability and repairability for self-healing Web
Services, 2005.

[25] Feng X., Wang H., Wu Q., Zhou B, “An adaptive algorithm for failure

recovery during dynamic service composition,” in Pattern Recognition

24 LATIN AMERICAN JOURNAL OF COMPUTING - LAJC, VOL III, NO. 2, NOVEMBER 2016

and Machine Intelligence (A. Ghosh, R. De, and S. Pal, Eds). Springer

Berlin / Heidelberg, vol. 4815, pp. 41-48, 2007.

[26] Feng X., Wu Q., Wang H., Ren Y., Guo C, "ZebraX: A model for service
composition with multiple QoS constraints", In Advances in Grid and

Pervasive Computing (C. Cerin, K.-C. Li, Eds.), Springer

Berlin/Heidelberg, vol. 4459, pp 614-626, 2007.
[27] Canfora G., Di Penta M.., Esposito R., Villani M, "A framework for QoS-

aware binding and re-binding of composite web services", Journal of

Systems and Software, vol. 81, pp. 1754-1769, October 2008.
[28] Saboohi P., Amini A., Abolhassani H., "Failure recovery of composite

semantic web services using subgraph replacement,, International
Conference on Computer and Communication Engineering (ICCCE), pp.
489-493, 2008.

Juan Vizcarrondo is System Engineer, and obtained a Msc

in Computer Science at the Universidad de los Andes,

Mérida-Venezuela, and a PhD in Computer Science at the

Universidad de los Andes. He works at the Cenditel since
2007.

 Jose Aguilar is a System Engineer graduated in 1987
from the Universidad de los Andes, Merida, Venezuela. M.
Sc. degree in Computer Sciences in 1991 from the
University Paul Sabatier-Toulouse-France. Ph. D degree
in Computer Sciences in 1995 from the University Rene
Descartes-Paris-France.. He completed post-doctorate
studies at the University of Houston, researcher at the

Microcomputer and Distributed Systems Center (CEMISID) at the same
university. Member of the Mérida Science Academy and the International
Technical Committee of the IEEE-CIS on Artificial Neural Network.

Ernesto Exposito earned his engineer degree in computer

science from the "Universidad Centro-occidental Lisandro
Alvarado" (Venezuela, 1994). He earned his PhD in

“Informatique et Télécommunications” from the Institut

National Polytechnique de Toulouse (France, 2003). He is
Professor in computer sciences at the Institut National des

Sciences Appliquées (INSA) of Toulouse.

Audine Subias received a PhD degree in 1995 and a
M.S.degree in 1992 in Informatique Industrielle, both
from Paul Sabatier University, in Toulouse, France. Since
1997 she is Associate Professor in control and discrete
event systems at the Institut National des Sciences
Appliquées (INSA) of Toulouse.

