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Abstract — This work aims to classify the DNA sequences of 

healthy and malignant cancer respectively. For this, supervised 

and unsupervised classification methods from a functional context 

are used; i.e. each strand of DNA is an observation. The 

observations are discretized, for that reason different ways to 

represent these observations with functions are evaluated. In 

addition, an exploratory study is done: estimating the mean and 

variance of each functional type of cancer. For the unsupervised 

classification method, hierarchical clustering with different 

measures of functional distance is used. On the other hand, for the 

supervised classification method, a functional generalized linear 

model is used. For this model the first and second derivatives are 

used which are included as discriminating variables. It has been 

verified that one of the advantages of working in the functional 

context is to obtain a model to correctly classify cancers by 100%. 

For the implementation of the methods it has been used the fda.usc 

R package that includes all the techniques of functional data 

analysis used in this work. In addition, some that have been 

developed in recent decades. For more details of these techniques 

can be consulted Ramsay, J. O. and Silverman (2005) and Ferraty 

et al.  (2006). 

 

Index Terms— Depth of functional data, DNA, functional data 

analysis, functional distances, statistical classification 

I. INTRODUCTION 

 

HE DNA Microarray chips and high-density 

oligonucleotide are widely used in modern biomedical 

research and can serve as a guide for the diagnosis and 

treatment of some diseases.  

 

   One of the most interesting and current applications is the 

characterization and classification of different types of cancer 

Singh D. et al. (2002). Microarray data show expression levels 

of many genes with respect to a number of observations 

(samples) and therefore can be considered as functional data or 

data with high dimension. 

 

   To this effect, it is very common to use multivariate methods 

to classify or create groups, for example according to Romualdi 

et al., (2003); Wessels et al., (2005); Tárraga et al. (2008) the 

best methods are: the K nearest neighbor method (KNN) and 

Diagonal Linear Discriminant Analysis (DLDA). Also, in the 

work of Dudoit et al. (2002) you can see a comparison of 

discrimination methods for the classification of tumors using 

gene expression data.  
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   However, these methods of classical statistics do not perform 

well when the dimension of the data is very high relative to the 

size of the sample. (López-Pintado et al., 2010) 

 

   In this paper, a new approach is proposed for the classification 

of different types of cancer using models of Functional Data 

Analysis (FDA). This recent field of statistics allows processing 

data with high dimension and take advantage of their functional 

character. 

 

   Specifically, it is used a generalized functional linear model 

fit to classify the levels of expression of a set of genes in a type 

of tumor that affects a group of individuals.  

 

   To illustrate procedures of Functional Analysis of data is 

used, the database "prostate” belonging to the package " 

depthTools " R, which contains a random sample of 25 non-

tumor samples (healthy) and 25 tumor samples (malignant), in 

which have been measured  the expression levels of 100 genes. 

For more details on the data, you can consult Singh D. et al. 

(2002). 

 

   A glossary follows explained in Table I. 

 
TABLE I 

TERMS GLOSSARY 

Term Definition 

AIC Akaike Information Criteria 

DNA Deoxyribonucleic Acid 

DLDA Diagonal Linear Discriminant Analysis 

FDA Functional Data Analysis 

FPLS Functional Partial Least Squared - Principal Component 

FM depth Fraiman and Muniz depth 

GCV Generalized Cross-Validation 

GFLM Generalized Functional Linear Model 

KNN K nearest neighbors estimator 

LLR Local Linear Smoothing 

NW Nadaraya Watson Kernel Estimator 

PL Partial Least - Principal Component 

RP depth Random Projection depth 

   Finally, to implement the FDA procedures, the R statistical 

software is used, because the R package fda.usc has applicable 

routines for functional data. This package carries out 

exploratory and descriptive analysis of functional data, 

analyzing its most important features such as depth 
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measurements or functional outliers detection, among others. 

Besides, fda.usc includes the functions implemented by Ferraty 

et al.  (2006). 

II. FUNCTIONAL DEFINITION AND REPRESENTATION 

 

    X is defined as functional variable of interest, level of 

expression of genes taking values in a normed space (or semi - 

normed) F, and the set {x1, x2,…,xn} is considered the 

functional data to be analyzed which come from 𝑛 functional 

variables X1, X2,…,Xn identically distributed as X. Functional 

data are discretized in a set of points {𝑡𝑗}𝑗=1
𝑑  not necessarily 

equidistant (as here). 

 

   Therefore, it has 𝑑 (genes) assessments for each of the 𝑛 

(observations) functional variables, that is, with a matrix of 50 

rows representing discretized curves and 100 columns 

representing points to evaluate. The first 25 rows correspond to 

levels of expression of normal tumors and the following 25 

rows to malignant tumors. 

 

   In Figure 1, you can see in black the different levels of the 

genes for normal tumors and red for malignant. At first glance 

this figure does not distinguish differences between tumor 

types. 

 

   To appreciate a greater difference on the relationship of genes 

and their expression level, for each tumor type a panel of six 

graphs is presented in Figure 2, in each row there are three 

graphs corresponding to normal tumors, first row, and 

malignant tumors, second row. The graphs in each row 

corresponds respectively to functional data (first), first 

derivative (second), and second derivative (third). 

 

   The representation made in Figure 1 for the functional data 

implicitly assumes a space 𝐿2 which does not allow adequate 

discrimination between tumor types; you can see that by 

studying the behavior of the level of gene expression in other 

spaces (see Figure 2) can have a better discrimination. 

Specifically, the functional space of the second derivative of the 

functional data provides greater features (depth and variability) 

to discriminate between the two tumors. 

 

 
Figure 1: Graph of functional data represented by curves of black color for 
normal and red for malignant tumors. 

 

 
Figure 2: Panel of six graphs, in each row there are three graphs corresponding 

to the functional data, first derivative and second derivative; in the first row for 

normal tumors and in the second row for malignant tumors. 
 

   The representations in bases made for the first curve of the 

sample’s functional data are shown in Figure 3: B-Splines (5, 

20), Kernel Smoothing (KNN, LLR, NW) and Principal 

Components (PL and FPLS). These representations allow you 

to work the problem in finite dimension. 

 

   For the selection of a base, a setting parameter must be 

calibrated that allows a better representation; for this selection 

has been considered as criterion the Generalized Cross-

validation (GCV) method. For more information about base 

types, methods and validation criteria, see Febrero-Bande, M. 

and Oviedo de la Fuente, M. (2012). 

 

   For the classification of tumors we work with representations 

in base; but for calculating distances and exploratory analysis 

of functional data we do not work with representation in base. 

The fda.usc R package is used to perform calculations using the 

corresponding numerical approximations. 

 

   As can be seen in Figure 3, depending on the method and the 

adjustment parameter representations in base, they are different. 

In the case of a representation by principal components we can 

see that there is not much difference between the PL and PLS 

method. 

 

      In Table II the following indicators are shown: the 

percentage of variance explained for each component; the 

correlation between the level of gene expression; and the type 

of tumor. These indicators are calculated for the original data, 

its first derivative and second derivative. 

 

 
Figure 3: The base representations made to the first observation of the 
functional data with bases: B -Splines (5.20), Kernel Smoothing (KNN, LLR, 

NW) and Principal Components (PL and FPLS). 
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   TABLE II 

PERCENTAGE OF EXPLAINED VARIANCE FOR EACH COMPONENT 

AND THE CORRELATION BETWEEN THE EXPRESSION LEVEL OF 
GENES AND TUMOR TYPE FOR THE ORIGINAL DATA, ITS FIRST 

DERIVATIVE AND SECOND DERIVATIVE 

Data Method Indices PC1 PC2 PC3 

Original 

PL 

% explained 

variance 
75.21 17.8 6.98 

Tumor type 

correlation 
67.8 -37.6 -11.3 

FPLS 

% explained 

variance 
79.75 14.78 5.47 

Tumor type 

correlation 
75.1 41.5 30.9 

First 

Derivative 

PL 

% explained 

variance 
71.85 23.76 4.39 

Tumor type 

correlation 
68.8 -35.6 41.6 

FPLS 

% explained 
variance 

75.3 18.64 6.06 

Tumor type 

correlation 
74.1 41.4 60.4 

Second 
Derivative 

PL 

% explained 

variance 
68.8 22.22 5.96 

Tumor type 
correlation 

66.8 -41.7 38.4 

FPLS 

% explained 

variance 
74.27 19.85 5.88 

Tumor type 

correlation 
73.7 42.6 52.2 

 

   About 70 % of the total variability of the data is explained by 

the first component, regardless of the method of principal 

components to be used; the variability explained by the second 

component increases to about 20 % when working in the spaces 

of the functions of the first and second derivatives. 

 

   In general, we can say that the first two components explain 

about 90 % of the variability; the first component has a strong 

positive ratio of about 70 % in all methods; and the second 

component has a negative ratio using the method PL and a 

positive  one using the PLS method. 

III.  DISTANCE BETWEEN FUNCTIONAL DATA 

    

   In this section it has been applied a metric for the 𝐿2 space 

and 4 semi - metrics for other semi - normed spaces, in order to 

calculate the distance between the functional data (for more 

information on the definition of each measure, see Febrero-

Bande, M. and Oviedo de la Fuente, M. (2012). For calculating 

these measures, have been implemented the following functions 

developed in the fda.usc package: 

 

1) metric.lp (for functional data represented in a 𝐿𝑝 space, 

with p = 2). 

2) semimetric.deriv (for functional data in the space of 

functions of the first and second derivative). 

3) metric.pl (based on the method of principal components 

(PL), it calculates a PL semi- metric between functional 

data). 

4) metric.mplsr (based on the principal component method 

(PLS), it calculates a FPLS semi- metric between 

functional data). 
 

 
 

TABLE III 

 PERCENTAGE OF CORRECT CLASSIFICATION OF TUMORS FOR 

EACH METHOD. 

Function Space % success 

metric.deriv First derivative 40 

metric.deriv Second derivative 78 

metric.pca Principal Component PL 84 

metric.mplsr Principal Component FLPS 98 

metric.lp L2 40 

 

   The result of each of these functions (metric and semi- metric) 

is a matrix of dimension 50 x 50 containing the distances 

between all curves (functional data). 

 

   You can use this information as a classification rule, since it 

is expected that the closest curves belong to the same tumor. 

In Figure 4 the dendrogram for the semi - metric Principal 

Component FPLS is shown.  

 

   The results presented in Table III, are the percentages of 

correct classification and correspond to distance functions (the 

metric and semi- metric). The highest values are those 

calculated by the metric.lp and metric.deriv functions. With the 

semi - metric calculated by the metric.mplsr function it was 

achieved a 98 % of success; it should be mentioned that only 

came to classify erroneously one case (curve 40: a malignant 

cancer classified as normal). Cuevas et al., (2001) use an 

approach based on density estimation for doing a Cluster 

Analysis. 

 

   Clearly, with these results is more advisable to work in semi 

- normed spaces to identify differences between the expressions 

of genes according to cancer types for better classification. 

IV. EXPLORATORY ANALYSIS OF FUNCTIONAL DATA 

 

For this section, the exploratory data analysis has been divided 

in two parts: 

 

1) Variability and central tendency estimation 

2) Outliers detection 

 

   Estimates of central tendency and variability for each type of 

cancer are done using robust methods, therefore there is not a 

great influence by outliers for estimates. 

 

   However, it was decided to conduct a study of outliers 

detection to illustrate the methodology to be used in the case of 

not having these robust methods. 

 

 
Figure 4: Dendrogram for the semi - metric Principal Component FPLS (98% 

correct classification) 
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Figure 5: Functional Mean for original data and second derivative for each 

type of tumor. 

 

A. Variability and central tendency estimation  

 

   The descriptive exploratory analysis consists in: calculating 

the mean, and functional variance of the expression levels of 

genes and its second derivative. This study is performed for 

each type of tumor to differentiate central tendency and 

variability of functional data. 

 

   In Figure 5, we can appreciate the functional mean for the 

original data and its second derivative. In each graph the 

functional mean is distinguished for each type of cancer.  

 

   As shown in the graph on the left, the difference between the 

curves of the functional means for the original data is not very 

noticeable; on the other hand, in the right picture for functional 

mean of the second derivative you can see a greater difference. 

 

   Overall the two graphs give us an idea that the expression 

levels of genes tend to values between -0.5 and 1.5, 

approximately; whereas, the second derivative between -0.5 

and 0.5. In addition, we can see that there is greater variability 

in the trend of the original data than in the second derivative. 

 

   In Figure 6, it is shown a graphical representation of the 

confidence ball representing the estimation limits, where the 

functional mean oscillates for each type of functional data in 

each space. It has been applied the smoothing bootstrapped 

method using the “fda.booststrap “function included in the fda. 

usc package. 

 

 
Figure 6: Confidence balls for Functional Mean for original data and second 
derivative for each type of tumor. 

 
Figure 7: Functional variance for the original data and second derivative for 

each type of tumor 

 

   In Figure 6, light blue curves are the representation of 

confidence balls at a level of 95% generated by the bootstrap 

method for functional mean (black color curve). For graphics 

on the left, gray curves correspond to the original data and for 

graphs on the right, they are the second derivative's. 

 

   In Figure 7 the curves of variance for each type of cancer are 

shown in the spaces of the original data (graph on the left) and 

the second derivative’s (right graph). Here you can see a 

marked difference between the variance of normal and 

malignant tumors. In malignant tumors a greater range of 

variation is observed that in normal ones; this same behavior is 

similar in the two spaces of functional data. 

 

B. Outliers Detection 

 

   Subsequently, a study on the presence of outliers is done 

because they could affect the estimation and performance 

(classification) of the model. The depth is a measure whose 

concept has emerged in the literature of robustness, measures 

how deep (or central) is a benchmark for a population (or 

sample). Therefore, those points having large depth values, will 

be closer to the behavior of the central data; and if they have 

less deep values, they will be potential candidates for outliers. 

For more information about the definition of a function of depth 

see Zuo Y. and Serfling R. (2000). 

 

   In univariate data, the median would be the deepest point of 

the set of points. For this study, we have applied the following 

depth measures which are included in the package fda.usc: 

Mode (mode depth); Median defined by Fraiman (Fraiman and 

Muniz, 2001) (FM depth); and Random Projections (RP depth).  

 

   Having studied the central tendency and variability of the data 

we continue with the detection of outliers in the sample. We 

start with an analysis with all the original data by calculating 

three measures of depth (shortened by 10 %) and the difference 

of each with respect to the median of functional data is observed 

(see Figure 8); subsequently, a scatter plot is made between the 

different depth measurements to see if there are outliers (the 

points with smaller depth values and that are not aligned to the 

general behavior of the points are considered outliers). 

 

   The analysis for the detection of outliers is accounted 

considering all the sample data; but this analysis is applicable 

for each subsample defined by the type of tumor. Table IV 

summarizes the curves (or outliers) considering the total sample 

and the subsample for each type of cancer. 
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Figure 8: A panel of six graphs, the first row has the representation of depth 
measurements contrasted with the median of the total sample. The second row 

shows the scatter plots between all the depth measurements. 
 

   In the code attached to this work can be found the procedure 

developed for the calculation of depth measurements as their 

graphic representation for the entire sample and for each 

subsample.  

    

   In Figure 8, a panel of six charts that are distributed as follows 

is presented: in the first row is the representation of depth 

measurements contrasted with the median of the total sample; 

and in the second row, we have the scatter plots between all the 

depth measurements; it should be noted that have been marked 

with a red box the outliers for each graph and the order 

considered for reading the graphs is from left to right. 

 

   Contrasting depth measurements (second row of the graphics 

panel of Figure 8), clearly can be observed outliers in all three 

cases. In the first graph two points are identified as atypical 

functional data representing curves 2 and 21 belonging to the 

normal tumor sample; the same curves also are identified as 

atypical curves by observing the third graph; while in the 

middle graph three atypical points are observed, curves 2, 21 

and 3.  

 

   To confirm this visual analysis, an analytical rule is applied 

which  considers as atypical functional data the curves  whose 

depth values are less than a quantile defined based on all 

calculated values of depth of each sample’s data (curves).  

 

   In the case of the mode depth measurements to a 1% quantile, 

it could be identified as atypical data curves 2 and 21; this also 

happens with the depth measurement of random projections, 

i.e., the curves 2 and 21 are identified as atypical again with 1% 

quantile. Whereas, for the identification of atypical data in 

FM’s median it is considered a 5% quantile and the curves are 

identified as 2 and 3.  

 

   Table IV summarizes functional data identified as atypical, 

considering each depth measurement and each sample. 
 

TABLE IV 

 PERCENTAGE OF CORRECT ANSWERS IN TUMORS 

CLASSIFICATION 

Depth 
Total 

Sample 
Normal 
Tumor 

Malignat 
Tumor 

Mode 2.2 2.2 40 

FM 2.3 2.3 40 

Rp 2.2 2.2 40.5 

    

 
Figure 9: Curves identified as atypical functional data for each type of depth 

measurement. 

 

   In Figure 9, three graphs are shown. On each one, original 

curves are presented in gray and data identified as atypical in 

blue and red. 

 

   These results at first glance might indicate to us that there are 

only atypical data in normal tumors and that there are no 

atypical in malignant tumors, but performing the same analysis 

to identify atypical data in the sample of malignant tumors, it 

comes down to detect as atypical curves 40 and 48. 

 

   While in the subsample of malignant tumors curves 40 and 41 

are identified as outlier. It is recalled that in the " Distance 

between functional data " section, in applying the distance by 

principal components to make a first approach to a 

classification rule, could not be correctly classify the curve 40. 

V.   GENERALIZED FUNCTIONAL LINEAR MODEL (GFLM) 

   This section provides a Generalized Linear Functional Model 

(GFLM) where the functional covariates are: the level of 

expression of genes denoted as: X=X (t), and, the first X'(t) and 

its second derivative X''(t) denoted as X1 and X2, respectively; 

and as response scalar variable (binary) the cancer type denoted 

as Y (0 = normal tumor, 1 = malignant tumor).  

 

In this case, as the GFLM works with a binary response 

variable, this model provides a classification rule for the type of 

cancer (Bayes’ rule). 

 

   This model is also called Functional Logistic Regression 

(Febrero-Bande, M. and Gonzalez-Manteiga, W. 2012), i.e. the 

models explain the relationship between Y (binary response) 

and a functional covariate X (t) by base representation X (t) and 

β (t). The functional model of logistic regression of the 

probability πi, the occurrence of an event, Yi = 1, rather than Yi 

= 0, conditioned on a vector of covariates Xi (t) is expressed as 

: 
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TABLE V 

 PERCENTAGE OF CORRECT CLASSIFICATION OF TUMORS 

Number Model AIC 
% 

classification 

1 Y~X 49.7 82 

2 Y~X1 21.8 96 

3 Y~X2 24.1 96 

4 Y~X+X1 22.0 100 

5 Y~X+X2 22.0 100 

6 Y~X1+X2 22.0 100 

7 Y~X+X1+X2 32.0 100 

 

   Where πi is the expectation of Y given Xi (t) modeled as 

follows:

 
With 𝝐i as independent errors with mean zero. 

 

   The functional variables used to estimate the model are: 

 

1) Y = binary variable that identifies the type of tumor (0 = 

normal tumor, 1 = malignant tumor) 

2) X = expression level of 100 genes of each individual 

3) X1 = first derivative of the expression level of 100 genes 

of each individual 

4) X2 = second derivative of the expression level of 100 genes 

of each individual 

 

   From these variables, they were estimated and compared 

seven models, Table III summarizes the characteristics 

evaluated to select the best model to use for the classification of 

tumor types. It is worth mentioning that the "fregre.glm" 

function from the R fda.usc package  was used and B - Spline 

as representation basis for the seven models. 

 

   Additionally, it was explored with a representation based on 

principal component (PLS) for models 1 and 2 (it was used  an   

R code for this) to improve results in adjustment and 

classification; but the results are similar to the representation in 

B - SPLINE therefore not proceeded to make estimates with this 

type of representation based . 

 

   The criteria used are: AIC (while lower is better); the 

percentage of tumors that are classified correctly from the total 

sample (% classification); and the percentage of prediction, that 

is, the percentage of tumors that are classified correctly from 

the total test sample (% Prediction). To calculate the prediction 

percentage, 10 test samples were used, 5 of normal tumors and 

5 of malignant tumors; these were taken randomly setting a 

seed. 

 

   In the first model (see Table V), only are considered the 

original data (levels of gene expression), this is the model that 

explain less (AIC = 49.7) and its classification and prediction 

percentages are 82 % and 80 % respectively; on the other hand, 

with respect to the significance of the model parameters, we 

have that the first component (ab.bspl4.1) is significant 

(0.00639) to a level of significance of 5%. All parameters for 

the other models are not statistically significant at a level of 

significance lower than 1 %. 

 

   The second model (see Table V), has the lowest AIC (21.8) 

of all the proposed models, but there are models with better 

percentages of classification and prediction. From Model 4 to 

Model 7, the percentage of classification and prediction is 100 

%, except for model 6 which has only a 70 % of prediction. 

 

   In general, when only are considered single-variable models 

of explanation for the type of cancer; AIC coefficient, the 

percentage of classification and prediction are the worst of all 

the proposed models. 

 

   Furthermore, it can be seen in Table V that increasing the 

number of variables in a model, the classification percentage 

improves up to 100%; however, when only considered in model 

6, the functional variables: first and second derivative, the 

percentage of prediction is 70 %; and, when you have a more 

complex model with three functional variables considering the 

original data, its first and second derivative prediction, the 

model improves prediction but worsens explanation (best fit); 

In conclusion, one has that the complex model is good for 

predicting but not to explain the behavior of the cancer type 

variable. 

 

   In Table V, the painted yellow rows indicate the two models 

that have the same characteristics of explanation (best fit), 

classification and prediction; models 4 and 5 are the best 

models of seven models estimated. Therefore, the best model to 

classify tumors in normal and malignant is that which consider 

original data and one additional functional variable which can 

be the first or second derivative of the original data; this model 

comes to have a classification and prediction efficiency of 

100%. 

 

   If the classification results obtained with models 4 and 5 are 

compared with the classification procedure by means of the 

distances between functional data used in section three which 

showed an efficiency of 98 %, we could say that for this sample, 

a Functional Generalized Linear Model is (GFLM) is more 

robust to the presence of outliers, as it allows an classification 

and prediction efficiency of 100%. 

 

   Finally, to complete this work Figure 10 shows the 

adjustments of the GLFM models for the cancer type variable 

when the entire sample of tumors is considered. It is worth 

mentioning that the graph settings for models of more than one 

explanatory functional variable is equal for all, because from 

model 4 to model 7 all have a classification percentage of 100%. 

 
Figure 10: Functional Mean for original data and second derivative for each 
type of tumor. 
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VI. CONCLUSIONS AND FUTURE RESEARCH 

 

1) It has greater discrimination when working with the first 

and second derivative of the expression of genes. This is 

reflected also in calculating the functional mean and 

variance in these spaces. 

 

2) In the section "Outliers Detection", curves 2,3,21 and 40 

are determined as outliers. These are not classified 

correctly using the cluster method but by using the 

functional generalized linear model. 

 

3) Increasing the number of variables in the functional 

generalized linear model, the classification percentage 

improves up to 100%. The functional variables included 

were the first and second derivative. 

 

4) The functional data analysis is very recent in the fields of 

statistics and medicine, despite this there is an increased 

interest in using this methodology. It is intended to 

continue to address problems of classification in other 

areas of science. 

 

5) Specifically for the medical field, will work to make a 

functional generalized additive linear model that eliminates 

the restriction of linearity for the independent variables. 

 

6) Besides, it is addressing functional models to describe the 

relationship of the expressions of genes with other 

variables related to cancer. 
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