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Abstract—Taking into account the chaotic characteristic of gas 

production within power transformers, a Least Square Support 

Vector Machine (LSSVM) model is implemented to forecast 

dissolved gas content based on historical chromatography 

samples. Additionally, an extending approach is developed with a 

correlation between oil temperature and Dissolved Gas Analysis 

(DGA), where a multi-input LSSVM is trained with the utilization 

of DGA and temperature datasets. The obtained DGA prediction 

from the extending model illustrates more accurate results, and 

the previous algorithm uncertainties are reduced. 

A favourable correlation between hydrogen, methane, ethane, 

ethylene, and acetylene and oil temperature is achieved by the 

application of the proposed multi-input model. 

 
Index Terms—Dissolved gas analysis (DGA), Gas 

chromatography, machine learning, Least Square Support Vector 

Machine (LSSVM).  

I. INTRODUCTION 

ower transformers constitute one of the most important 

equipment in an electrical power system. These assets are 

generally efficient, reliable, and capital intensive, with an 

expected service life of 40 years or more.  

Thermal or electrical stress contributes to insulating system 

deterioration within power transformers. Mineral oil and/or 

paper degradation is associated with abnormal functionality and 

possible incipient faults in the equipment, consequently, 

different types of hydrocarbons and carbon oxides are 

produced.  

The composition of the gas dissolved in mineral insulating 

oils can be analyzed by the application of a diagnostic tool 

called Dissolved Gas Analysis –DGA, which detects and 

evaluates internal failures and their development trends.  

A correct interpretation of DGA results is required to forecast 

and prevent failures with significant accuracy. References [1] 

and [2] explain concepts regarding power transformers 

insulating system composition, the degradation process of 

mineral oil and cellulose, the effects of operating conditions on 

gas production, and procedures utilized to detect and analyze 

possible failures.   

The amount of available DGA data has a significant impact 

on the accuracy of the final results. Data analytic methods for 

power transformers involve amounts of data without existing 

formula or equation to correlate variables. As a result, machine 

learning algorithms have been used to diagnose and forecast 

dissolved gas concentration levels in power transformers, 

which are based on learning information directly from past 

DGA data and adapting their performance for future 

predictions.  

Consequently, this project aims to predict dissolved gas 

content trends applying real chromatography data. A specific 

objective refers to obtaining high accuracy in the forecast 

values, where the randomness behaviour of the DGA data must 

be reduced by the application of processing techniques.  

A Least Square Support Vector Machine (LSSVM) is 

implemented and validated. Finally, considering the influence 

of the operating conditions in the dissolved gas content into the 

power transformer, a correlation between oil temperature and 

DGA is also proposed to improve the predictions.    

Motivated by the above-mentioned difficulties, a Least 

Square Support Vector Machine model (LSSVM) for DGA data 

predictions is constructed in this project, where historical real 

DGA data obtained from the industrial sector is used for 

training and testing the proposed algorithm. As part of the 

present work, a pre-processing stage is used to reduce the 

randomness DGA behaviour, which in addition to the LSSVM 

capabilities contribute to obtaining more accurate predictions. 

As mentioned before, gas content changes are hugely 

affected by power transformer operating conditions, thereby a 

correlation between dissolved gas content and oil temperature 

is included as an extending approach of this project. The 

construction of a multi-input LSSVM model is developed with 

the application of DGA and oil temperature data in the training 

period. The main goal of the second proposed algorithm is to 

increase the accuracy of the forecasting DGA values.   

II. DISSOLVED GAS ANALYSIS METHODS 

All transformers generate gases of some amount at normal 

operating conditions. Occasionally, this generation can lead to 

severe faults within the transformers. A dissolved gas analysis, 

which is the most common type of transformer monitoring can 

provide important data to increase the availability of power 

transformers. This analysis is based on chromatography 

methods, where oil samples are analyzed in laboratories. A 

number of gases (hydrogen, methane, ethane, ethylene, 

acetylene), and the relationship between each other help to 

identify the type of faults at an early stage [1]. 

A. Key gas method  

The method is dependent on the gas released at various 

temperatures of oil and cellular (paper) decomposition due to 

faults. The fault is determined by calculating the relative 

proportions of the gases. These significant gases are known as 

‘key gases’. The four general fault types are described by [1], 

[3]. 
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B. Ratio Method 

The ratio method is a technique which involves the 

calculation of key gas ratios and comparing these ratios to a 

suggested limit. Some of the most commonly used techniques 

are Doernenburg ratios and Rogers’s ratios. The Doernenburg 

method is one of the effective diagnostic tools available but is 

less used due to its complexity. In this method, the 

concentration of one of the principle gas needs to be two times 

the other gases to be possible to calculate the ratios. The Rogers 

ration method is an advanced form of Doernenburg method and 

has almost same principle. But the requirement of needing 

significant concentration of principle gases is not there. The 

faults are chosen accordingly with the gases and the ratios [4]. 

C. Duval’s Triangle 

 This is one of the most preferred and also a highly-

recognized method in IEC guidelines used for the gas analysis. 

It is recommended for its supreme accuracy in determining the 

faults. The advantage of this method is that it requires only 3 

gases to analyze all types of potential faults within the 

transformer. The 3 gases are methane (CH4), acetylene (C2H2), 

and ethylene (C2H4). The construction of the triangle is in such 

a way that one calculates the total accumulated amount of three 

key gases and divides each gas by the total of the three gases 

and the percentage associated with each gas is found. The 

arrived values are plotted on a triangle as in the figure to arrive 

at a diagnosis [2]. Figure 1 illustrates the relative percentages 

of the 3 gases, which are plotted on each side of the triangle 

from 0% to 100% [5]. According to the relationship between 

the 3 gases, the diagnosis can be obtained from the fault zones 

in the triangle (Table 1). 

III. LEAST SQUARE SUPPORT VECTOR MACHINE 

ALGORITHM (LSSVM) 

Least square support vector machine (LSSVM) requires a 

reduced quantity of data to predict the future time series. 

‘’Based on the available time series, network internal 

parameters are tuned using an appropriate tuning algorithm’’ 

[6]. LSSVM is a reformulation of the traditional SVM, and it is 

more suitable to solve the regression problems [7]. Basically, 

LSSVM approach refers to solving a set of linear equations, due 

 

Table 1 Duval's triangle fault zones [2] 

Code Fault zone 

T1 Low-temperature thermal fault (T<300°C) 

T2 mid temperature thermal fault (300°C to 
700°C) 

T3 High-temperature thermal fault (T>700°C) 

D1 discharges of low energy 

D2 discharges of high energy 

D+T mix of thermal and electrical faults 

PD partial discharges 
 

to equality instead of inequality constraints in the problem 

formulation [8]. 

Given a training dataset {xk, yk}, where 𝑥𝑘 ∈  𝑅𝑚
  is the input 

data, and 𝑦𝑘 ∈ 𝑅 is the corresponding output data. In literature 

[7], a linear equation of higher-dimensional feature space is 

defined as: 

 𝑓(𝑥) = 𝑤𝑇 . 𝜑(𝑥) + 𝑏                         (1) 

 

where φ(. ) is a nonlinear mapping of data from input space into 

a higher-dimensional feature space. The optimization problem 

can be described by the following equations: 

 

     𝑚𝑖𝑛 𝐽(𝑤, 𝑒) =
1

2
𝑤𝑇𝑤 +

1

2
𝛾 ∑ 𝑒𝑘

2𝑁
𝑘=1                (2) 

 

Subject to 𝑦𝑘 = 𝑤𝑇φ(𝑥𝑘) + 𝑏 + 𝑒𝑘 , 𝑘 = 1,2, … , 𝑁, where 

𝑤 ∈  𝑅𝑚 error variable 𝑒𝑘 ∈  𝑅, and b is bias. J is the loss 

function, and γ is an adjustable constant [8]. The Lagrangian 

function is defined according to the optimal function (2): 

 

𝐿(𝑤, 𝛼𝑘, 𝑏, 𝑒𝑘) = 𝐽 + ∑ 𝛼𝑘[𝑦𝑘 −𝑁
𝑘=1 𝑤𝑇𝜑(𝑥𝑘) − 𝑏 − 𝑒𝑘] (3) 

 

Regarding to equation (3), αk represents the Lagrange 

multipliers which also support vector 𝛼𝑘 ∈  𝑅 [8]. According to 

the linear KKT system [6], the first-order derivatives of 𝐿 are: 

 

                              
𝜕𝐿

𝜕𝑤
= 0    →     𝑤 = ∑ 𝛼𝑘  𝜑(𝑥𝑘)𝑁

𝑘=1               (4) 

                    
𝜕𝐿

𝜕𝛼𝑘
= 0   →     𝑤𝑇𝜑(𝑥𝑘) + 𝑏 + 𝑒𝑘 − 𝑦𝑘 = 0        (5) 

 

                                 
𝜕𝐿

𝜕𝑏
= 0     →          ∑ 𝛼𝑘

𝑁
𝑘=1 = 0                   (6) 

                                
𝜕𝐿

𝜕𝑒𝑘
= 0     →          𝛼𝑘 = 𝛾𝑒𝑘                        (7) 

 
After eliminating 𝑤 and 𝑒𝑘, matrix equation (8) is gotten [7], 

which is a set of nonlinear equations to be solved in α and b. 

These implicitly omissions correspond to creating an ε-

insensitive zone in the underlying cost function, which is clear 

from the condition for optimality equations (4), (5), (6), and (7) 

[9].  
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]                         (8) Figure 1 Duval's Triangle [2] 
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where 𝛺 = 𝐾(𝑥, 𝑥𝑘), 𝐼 is the identity matrix, 𝜂𝑙
𝑇 = [1 … 1], 𝑠 =

[1 … 1]𝑇. 

Therefore, the resulting LSSVM model for function estimation 

becomes [9]. 

 

                       𝑓(𝑥) = ∑ 𝛼𝑘𝐾(𝑥, 𝑥𝑘) + 𝑏𝑁
𝑘=1                         (9) 

 

The parameters 𝛼𝑘 and 𝑏 in equation (9) represent the 

solution to the linear system. Similar to the standard SVM, 

𝐾(𝑥, 𝑥𝑘) is the kernel function, and in the case of function 

estimation, RBF kernels can be applied. RBF kernel function 

has an advantage in comparison with SVM, because it has only 

two additional tuning hyper-parameters (Ƴ,𝜎). 

IV. DISSOLVED GAS CONTENT PREDICTION BASED 

ON LSSVM – METHODOLOGY AND VALIDATION 

Handling the available data and finding the right algorithm 

refer the most important challenge in machine learning 

techniques. Firstly, pre-processing techniques must be applied 

to attenuate the randomness behaviour of the dissolved gases 

content samples before using this data as an input of the 

LSSVM model.  

Figure 2 describes the workflow implemented with LSSVM 

model. The first step in the training and testing periods refers to 

the pre-process of dissolved gases content data.   

According to [7], the pre-processing techniques are required 

to attenuate the stochastic characteristics of the time sequence 

data and regularized its performance, in this manner carry out a 

reasonable prediction to a certain extend. Two different 

techniques are applied as data preparation before the machine 

learning algorithm: removing outliers from the series 

(smoothed) and data normalization.   Both techniques have been 

chosen considering the performance of the LSSVM in the 

testing stage. Practical DGA sample data are a sequence of 

random observations taken over different periods of time, 

because of this some gas content measurements differ 

significantly in magnitude. The performance of the first 

technique is shown in Figure 3, which is applied to the ethane 

dataset. It can be noticed how the original data is rescaled in 

order to eliminate anomalies and avoid possible inconsistencies 

in the training period of the machine learning. A data 

normalization is also applied as a pre-processing method. The 

dataset is normalized in the range [0, 1] according to equation 

(10), before applying the DGA samples as an input of the 

LSSVM. 
 

Figure 2 Machine learning workflow [10] 

Figure 3 Ethane smooth data 

 

                       𝑦(𝑡) =
𝑥(𝑡)

𝑚𝑎𝑥 (𝑥(1),𝑥(2),…𝑥(𝑛))
                                 (10) 

 

where = 0,1, … , 𝑛 , x(t) represent the DGA time-series dataset, 

while y(t) is the normalized parameter [6]. 

The LSSVM forecasting model is implemented based on the 

MATLAB LS-SVMlab toolbox. In this work, LSSVM is 

applied as time-series prediction (function estimation) based on 

the pre-process data, as describes  

4. The available data corresponds to 52 samples and it is split 

into the training and testing datasets. The training dataset 

corresponds to 75% of the total data (39 samples), and it is 

applied to build the LSSVM model, while the remaining 25% 

(13 samples) is used to verify the model performance.  

A. Training the model  

The machine learning algorithm is built and trained using the 

optimal (Ƴ, 𝜎) hyper-parameters combination, and the total 

training set. In the proposed model, a robust training function is 

applied as training function, which is more suitable in the case 

of data containing non-Gaussian noise or outliers [11]. This 

specific function improves the final model performance, as a 

result of the support values influence corresponding to noise 

and outliers is decreased, and their corresponding large errors 

can be avoided.  

The LSSVM algorithm requires an input training dataset and 

their corresponding output training dataset in order to build the 

model. The raw DGA data is used as input, and the results of 

the pre-process methods (smoothed or normalized) data is the 

corresponding output dataset in the training period.  

After the iterative process, the model performance has the 

sufficient accuracy in order to starts with the testing stage, 

where the average error is collected and calculated, and the new 

parameter combination is replaced. The iterative process is 

repeated until approach the stopping criteria [6]. Considering 

the best cross-validation performance and the minimized error, 

the optimal (Ƴ, 𝜎) hyper-parameters are chosen [9]. 

B. Testing model 

The trained model must be integrated into the prediction 

application, substituting the training dataset by the testing 

dataset into the LSSVM model, and in this way, the estimation 

values can be obtained [6]. In order to verify the LSSVM 

forecasting model performance, a testing dataset is applied to 

see how it will respond with unknown data. Using the 

remaining 25% of the available DGA data, the proposed 

algorithm is validated against the actual values from the 

corresponding analysis, which error is used to verify the 

LSSVM model forecasting ability. 
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Figure 4 LSSVM flowchart of the proposed model [6]. 

C. Validation of DGA forecasting data based on LSSVM 

The dataset contains chromatography samples of three power 

transformers collected between October 2012 and May 2016, 

where the gas concentration values of hydrogen (H2), oxygen 

(O2), nitrogen (N2), carbon monoxide (CO), methane (CH4), 

carbon dioxide (CO2), ethylene (C2H4), ethane (C2H6), and 

acetylene (C2H2) have been included.   

The DGA forecasting values based on LSSVM model for 

hydrogen data are shown in Figure 5, where the superposition 

curves of actual and predicted DGA dataset is demonstrated. 

Clearly, it can be noticed that a high performance has been 

achieved with the LSSVM forecasting values for the different 

gases. Regarding Figure 6, this describes the LSSVM results in 

the environment of the training data [11], and the corresponding 

obtained optimal hyper-parameters (Ƴ,𝜎).  

An excellent correlation between the raw DGA sample and 

the corresponding pre-process data is defined by the applied 

machine learning. Most of the gases illustrate a well-defined 

function correlation between the raw data and the pre-process  

 

 

Figure 5 Actual and predicted DGA data using LSSVM model – hydrogen 

 

Figure 6 LSSVM performances in the training period 

 

output in the training stage, where the regulation optimal 

parameter (Ƴ) is obtained through the solution of the linear 

LSSVM, and the optimal kernel parameter (σ) is determined by 

choosing the midrange of values through an iterative process 

until its error is minimized [7].  

The LSSVM forecasted results are validated in comparison 

to the actual corresponding data. The predicted values of H2, 

O2, CO, CO2, C2H4, C2H6, and C2H2 demonstrate a low 

mean absolute percentage error (MAPE), which varies in the 

range 0.1154 - 19.9 %. 

Consequently, the developed LSSVM algorithm 

demonstrates an effective performance in the training and 

testing periods, where a relatively small of datasets have been 

applied. In some cases the pre-process stage and the robust 

functions, which are applied in the training stage of the 

proposed model, apparently cannot avoid the randomness 

characteristic completely. For instance, nitrogen (N2) and 

methane (CH4) forecasting values show higher rates of MAPE 

(35.76% and 36.48% respectively) in comparison with the rest 

of gases.  

Hence, it can be considered that these two cases do not 

provide enough effectiveness in the prediction of future trends 

of gas production, and some misinterpretations can be 

generated. 

In overall, a high performance is achieved by the LSSVM 

model. Its effectiveness is demonstrated by the similar trends 

described in Figure 5, and the corresponding error rates in each 

case. Owing to the possible issues that can be produced by an 

over/underestimation of gas dissolved content, an alternative 

approach will be developed in the next section, where some 

operating conditions of the power transformer will be included 

in order to improve the gas prediction.  

V. CORRELATION BETWEEN GAS CONCENTRATION 

LEVELS AND OPERATING CONDITIONS 

As mentioned before and according to [2], any gas formation 

results from a stress of some kind (thermal or electric) inside 

the equipment, additionally, the authors in [12] state that the 

insulation system quality depends on the mechanical 

(temperature, vibrations) and electrical (voltage levels, loading) 

influences. Hence, evaluate the status of the power transformer 

considering further parameters such as environmental 
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influences and operating conditions can contribute to a much 

better interpretation and understanding of the dissolved gas 

production changes, and the subsequently malfunction 

detection that eventually can lead to failure. 

Available data can be used to analyze the condition of power 

transformers and planning maintenance task based on real 

asset’s condition instead of every certain period of time, which 

benefits might not have a significant impact on the transformer 

performance.   

A. Temperature influences on DGA 

Reference [2] states that the different gases require specific 

temperatures in order to accumulate as a stable recombination 

product. It means that gases are formed depending on fault type 

and temperature. For instance, gases such as acetylene require 

temperatures of at least 800°C to 1200°C to show an 

accumulative trend [2], ethylene with hot spots between 150°C 

and 1000°C [13], and carbon oxides (CO and CO2) can be 

formed at temperatures higher than 105°C.  

Indeed, temperature are strongly linked with gas production 

and consequently with abnormal oil and paper degradation into 

the power transformer. In literature [4], results obtained from 

transformers with different features and operating conditions 

demonstrate that the solid insulator life-cycle at high loading 

and/or high operational temperatures decreases as result of 

abnormal circumstances. For these reasons, temperature 

measurements corresponding to the same intervals when the 

DGA samples were obtained have been included to build a 

multi-dimensional algorithm and improving the accuracy of gas 

concentration level predictions. 

B. Multi-input LSSVM model 

The applied LS-SVMlab toolbox has a multi-dimensional 

capability in order to include additional input and/or output 

variables. The work presented in [12] refers to the arising of 

nonlinear behaviour in time-series predictions conducted by 

aggregating data from multiple sources. 

As mentioned in [9], the LSSVM multilayer network is first 

trained on subsets of data D1,…, Dm, and followed by a 

nonlinear combination, which is determined by solving a 

parametric optimization problem. In fact, this implementation 

also uses a kernel function (RBF) to obtaining the hyper-

parameters through an iterative process (10-fold cross-

validation) in the training period.   

The multi-input LSSVM algorithm is first trained on subsets 

of data D1, D2, …, Dm, and the combination of the models is 

determined by solving a parametric optimization problem, 

which provides an interacting cooperation for the ensemble and 

in this way realize collective intelligence [9].  

In this work, multiple input and output values are used in the 

training of the novel LSSVM algorithm, where the input vectors 

refer to the actual DGA and temperature data, while the 

corresponding normalized values are applied as output vectors.  

As documented in [14], the machine learning method 

automatically correlates particular patterns of oil temperature 

with historical DGA data in the training period. The novel 

LSSVM model is built based on the input datasets and the 

hyper-parameters (Ƴ, 𝜎) obtained from the training stage. 

The multi-input LSSVM algorithm performance is tested by 

the application of unknown DGA data. In this case, the input 

testing dataset contains DGA samples as a unique variable to 

establish the expected gas concentration level changes into the 

power transformer. Similar to [11], the proposed LSSVM 

model treats the DGA sample date as an event interval, while 

the temperature values contain several measurements for the 

corresponding DGA interval. Owing to this difference between 

the amount of DGA data and temperature measurements in 

every interval used in the present work, cumulative statistics 

should be applied to characterize the temperature contribution 

to the dissolved gas concentration level changes.  

C. Multi-input LSSVM model validation 

The actual DGA data and the characterize vector obtained 

from oil temperature measurements by the application of 

cumulative statistics are applied as input values for the training 

period of the multi-input LSSVM model. The same pre-process 

methodology used in the first LSSVM algorithm is applied to 

attenuate the randomness behaviour of DGA data and the 

representative feature vectors of temperature for each 

descriptive statistics method (mean, variance, standard 

deviation, and kurtosis). The normalized values of both datasets 

are applied as the corresponding output of the novel model 

training. 

The multi-input LSSVM algorithm is built based on the 

obtained hyper-parameters (Ƴ, σ), the DGA samples and the 

characterize temperature values throughout the training period 

for each used descriptive statistics method. 

The performance of the novel model is verified through the 

substitution of the training datasets by unknown testing data. In 

this stage, the algorithm is tested by the application of unused 

DGA data as unique input. The multi-input LSSVM model 

responses are validated in comparison to the actual DGA and 

the values predicted by the earlier LSSVM model for every gas 

included in this work. 

As can be seen in Figure 7, many experiments with the 

inclusion of temperature patterns in the training period of the 

novel LSSVM model have been conducted to identify the best 

performance. Some of the new forecasts indicate improvements 

in accuracy, others have not shown important changes, while in 

some cases the values are less accurate in comparison to the 

earlier predictions obtained by the first LSSVM model.  
Figure 7 Temperature and DGA correlation - Testing values based on multi-

input LSSVM - Methane 
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Figure 8 Methane time-series comparison between DGA forecasting model 

and temperature correlation model      

Taking into consideration the mean absolute percentage error 

(MAPE) calculated values, evidently, the forecasting values of 

hydrogen (H2), methane (CH4), and ethane (C2H6) have been 

improved mainly by the application of kurtosis as feature 

extraction method of the temperature measurements. 

Comparing the results obtained from the first and second 

models, the mean absolute percentage error of hydrogen 

predictions is improved from 12.16% to 5.87%, methane 

MAPE decreases from 36.48% to 5.69%, whereas ethane shows 

a drop from 7.7% to 5.65% in its corresponding MAPE. 

Obviously, the correlation between temperature patterns and 

hydrogen, methane, and ethane has an important influence on 

the corresponding forecasting values. One of the least accurate 

predictions obtained by the first proposed LSSVM model 

represents methane content, whose uncertainty is reduced by 

30% with the inclusion of kurtosis as feature extraction of the 

temperature measurements into the novel model as Figure 8 

indicates.  

To sum up, the novel LSSVM model developed with the 

correlation between DGA and oil temperature patterns indicates 

the influence of this operating conditions of the power 

transformer in certain gas concentration behaviour, whose 

relationships must be interpreted bearing in mind the 

International Standards referred in [1] and [2]. 

VI. CONCLUSIONS 

Considering the least accurate results obtained from the first 

LSSVM proposed model, a multi-input novel LSSVM model is 

developed with the inclusion of oil temperature patterns with 

the main aim of improving the previous predictions values. 

Temperature condition has a significant impact in dissolved 

gas content changes taking into account the improvements in 

the predictions obtained with the application of this novel 

model. Therefore, as part of the extending approach, a 

correlation between DGA and oil temperature is found by the 

application of multi-input LSSVM model. According to the 

obtained results, the most notable improvements in the 

forecasting values are obtained with the application of kurtosis 

as feature extraction of temperature due to it reflects the 

changes between the temperature measurements. An excellent 

correlation between oil temperature and hydrogen, methane, 

ethane, ethylene and acetylene is reached in the three utilized 

power transformers. Some of the obtained relationships can be 

linked to the interpretation of the gas analysis. In contrast, the 

nitrogen (N2) forecasting values show a considerable 

inaccuracy, whose MAPE value is around 35.76%. The 

application of oil temperature in the training model utilized in 

the multi-input LSSVM model developed as extending 

approach has not affected either (56.93%) and can be 

considered as a weakness of the proposed models. Considering 

the interpretations of DGA given by [2], oxygen and nitrogen 

are found in oil as a result of contact with atmospheric air, 

which can be stated as the reason for the lack of correlation with 

oil temperature.   

In conclusion, the obtained forecasting DGA data contain 

important accuracy for the three power transformers used in this 

project, and it can bring sufficient certainty to applying further 

analysis. 
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