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First Order Methods for High Resolution Image
Denoising

David Villacı́s

Abstract—In this paper we are interested in comparing the
performance of some of the most relevant first order non-smooth
optimization methods applied to the Rudin, Osher and Fatemi
(ROF) Image Denoising Model and a Primal-Dual Chambolle-
Pock Image Denoising Model. Because of the properties of the
resulting numerical schemes it is possible to handle these com-
putations pixelwise, allowing implementations based on parallel
paradigms which are helpful in the context of high resolution
imaging.

Index Terms—Image Denoising, High Resolution, Parallel
Computing, First Order Optimization Methods, Non-smooth
optimization methods.

I. INTRODUCTION

Image Denoising is one of the most revisited image analysis
tasks, it consists of removing noise from a damaged original
image. According to [1, p. 145] noise can be added in an
image due to problems in the image adquisition processes
such as: malfunctioning pixels in the camera sensors, faulty
memory locations in hardware, analog-to-digital conversion, a
noisy transmission channel, etc. Traditional techniques used
to solve this problem include the use of filters [2], Wavelets
[3], and lately in [4] the use of variational models have been
popularized due to the elegant way of enforcing properties in
the image without the need of single them out explicitly. We
are interested in addressing the efficiency of some relevant
variational models relying on conjugate duality and saddle
point formulations and their application on parallel computing
paradigms.
In this work we will consider an image as a n1 × n2 pixel
matrix, and for simplicity on the mathematical treatment we
will map this matrix as a vector x ∈ Rn, where n = n1 · n2.
Thus a pixel in location (i, j) is the element xi+n1(j−1) of the
vector x.
We will consider the image denoise problem as an inverse
problem where the observed image is defined in (1).

f = T (x) + η, (1)

where T is a non-linear operator and η is an additive type of
noise. In order to solve this problem we can use a Tikhonov
regularization of the problem in (2).

f = φ(x) + λR(x), (2)

where φ is a data fidelity term that is selected according to the
type of noise present in the image and R is called regularizer
and promotes certain properties in the solutions obtained.
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II. IMAGE DENOISING MODELS

A. Total Variation Regularization (TV)

The idea of using Total Variation (TV) as a regularizer is
to induce sparsity on the gradients of an image, this particular
property favours piecewise constant images with sparse edges.
Introducing the discrete gradient operator K : Rn → Rm with
m = 2 × n and x ∈ Rn a given image, the discrete Total
Variation (TV) is defined by (3).

‖Kx‖p,1 =

n∑
j=1

‖(Kx)j‖p =

n∑
j=1

((Kx)pj + (Kx)pn+j)
1
p (3)

The p parameter is used to realize anisotropic (p = 1) or
isotropic (p = 2), the latest is usually prefered since it does
not exhibit a grind bias.

‖Kx‖2,1 =

n∑
j=1

‖(Kx)j‖2 =

n∑
j=1

√
(Kx)2

j + (Kx)2
n+j (4)

Figure 1 shows the impact of using this regularizer on the
denoising model.

B. Rudin-Osher-Fatemi (ROF) Model

The TV denoising variational model was first introduced
by Rudin, Osher and Fatemi in their seminal paper [5]. They
proposed a model that contains a data fidelity term for gaussian
noise and a regularizer according to the following model:

min
x∈Rn

1

2
‖x− f‖22 + λ‖Kx‖2,1, (5)

where f ∈ Rn is the input corrupted image and λ is the
Tichkonov regularization parameter.
In order to handle the regularization term for this model, it is
a usual practice to make use of its Fenchel-Rockafellar dual
version:

min
y∈Rm

‖f −K>y‖22 + δBλ(y) (6)

Where δ is the indicator function of the λ-radius ball Bλ(0),
and y ∈ Rm is the dual variable.
In order to approach this problem numerically it is helful to
use a saddle point formulation of (5):

min
x

max
y

1

2
‖x− f‖22 + 〈Kx, y〉 − δBλ(y) (7)
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(a) Original (b) Gaussian Noise (c) 1
2
‖x− f‖22 + λ‖Kx‖22 (d) 1

2
‖x− f‖22 + λ‖Kx‖2,1

Fig. 1: Image denoising examples using Forward-Backward method for ‖Kx‖22 (1c) and ‖Kx‖2,1 (1d) regularizers. We can
see that the use of Total Variation (4) promotes sharper edges inside the image. The original image has been modified with
additive gaussian noise with mean 0 and variance 0.2.

C. TV-l1 Model

The denoising task is very sensitive to the noise type
appearing in the image, as a matter of fact, the ROF Model
presented previously works for gaussian distributed noise as
noted in the work presented by Chan et al.[6]. When it comes
to impulse distributed noise, seminal work by Nikolova [7]
shows that using a l1 data fidelity term gives us better results
in the output image; this effect is illustrated in Figure 2. This
model was described as follows:

min
x∈Rn

‖x− f‖1 + λ‖Kx‖2,1, (8)

where f ∈ Rn is the input corrupted image and λ is the
Tichkonov regularization parameter. It is not hard to see that
this model contains two non-differentiable terms, which yields
a harder problem to be solved. In order to derive numerical
methods for this model, let us formulate the corresponding
saddle-point problem:

min
x

max
y
‖x− f‖1 + 〈Kx, y〉 − δBλ(y) (9)

III. NUMERICAL TREATMENT

In this section we will present the numerical methods
used to solve (5) and (8) along with their corresponding
algorithms. Several analytical tools such as Conjugate Duality
and Proximal Operators will be used to derive formulations
more suitable for a parallel computation environment.

A. ROF Model

1) Forward-Backward Splitting: The conjugate dual ROF
Model (6) presented in section II has a particular structure that
can be exploited, it is the smoothness of the data fidelity term
‖f − K>y‖22, which in this case is differentiable. Therefore,
we can use several splitting numerical mechanisms to find the
solution. Let us first analyze the Forward-Backward splitting.
Taking in consideration this specific model, f(y) = δBλ(y)
the characteristic function of the λ-ball, and ∂f the convex
subdifferential of f we can describe the optimality condition

as:

0 ∈ ∇g(x) + ∂f(x),

0 ∈ K(f −K>y) + ∂f(y),

∂f(y) 3 −K(f −K>y),

τ−1y + ∂f(y) 3 τ−1y −K(f −K>y),

y = (I + τ∂f)−1(y − τK(f −K>y)).

We will name (I+τ∂f)−1 as proxτ∂f , the proximal operator
for f . The proximal operator provides the unique optimizer of
a Moreau-Yosida (MY) regularization of a function f :

fMY (x) = f(x) +
1

2τ
‖x̄− x‖22. (10)

In [8] it is shown that (10) has a unique minimizer and
the resulting function is proper, lower-semicontinuous and
strongly convex. Moreover, its minimizer solves the following
optimization problem:

proxτ∂f (x) = argmin
x̄

f(x) +
1

2τ
‖x̄− x‖22 (11)

Leading to the following numerical iteration:

yk+1 = proxτ∂f (yk − τK(f −K>yk)). (12)

This iteration requires the calculation of the proximal operator
of δBλ(y), for this application in particular this operator
corresponds to the pixel-wise projection of y onto the λ-radius
ball.

[projBλ(y)]i =
yi

max{1, λ−1‖y‖2}
, ∀i = 1, . . . , n (13)

Now, working on the dual optimization problem exclusively
we can make use of Algorithm 1 to obtain the optimal dual
value and retrieve its primal xk = f −K>yk.

2) Chambolle-Pock Method: This method handles the sad-
dle point formulation of the problem (7). We can find in this
formulation that it contains a primal part and a dual part. To
tackle this problem this method proposes two proximal steps,
one for the primal part and one for the dual part, and an
interpolation step that in the case of the ROF model yields
the numerical scheme presented in Algorithm 2.

As a preliminary experiment, in Figure 3 we can see the
convergence properties of the two methods presented in this
section. Indeed we can see that the Chambolle-Pock method
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(a) Original (b) Impulse Noise (c) ROF Model (d) TV-l1 Model

Fig. 2: Image denoising examples using Chambolle-Pock method for ROF Model (2c) and TV-l1 model (2d) regularizers with
λ = 0.2. We can see that the ROF model cannot tackle the image denoising task appropiately when it is presented with impulse
noise.
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Fig. 3: ROF Cost Function evolution for Forward-Backward and Chambolle-Pock Methods.

Algorithm 1 Forward-Backward Splitting for ROF Denoising

1: Choose λ > 0, τ > 0, k = 0.
2: Set number of iterations niter.
3: while k < niter do
4: Calculate ∇g(yk) = K(f − τK>yk)
5: Perform projection onto the λ-ball

yk+1 = projBλ(yk − τ∇g(yk))

6: k = k + 1
7: end while
8: Retrieve primal value xk+1 = f −K>yk+1.

presents better convergence properties thanks to the use of the
extra information provided by the proximal operator.

B. TV-l1 Model

1) Chambolle-Pock Method: For this model we will make
use of a saddle point formulation of the TV-l1 model (9). In
order to apply the Chambolle-Pock Method we need to derive
the form of the proximal operator for g(x) = ‖x− f‖1.

proxτ∂g = argmin
x̄
‖x− f‖1 +

1

2τ
‖x̄− x‖2. (14)

Algorithm 2 Chambolle-Pock Method for ROF Denoising

1: Choose λ > 0, τ, σ > 0, k = 0.
2: Set number of iterations niter.
3: while k < niter do
4: Calculate the proximal step for the primal function

xk+1 =
xk + τ(f −K>yk)

τ + 1

5: Calculate the interpolation step x̄k+1 = 2xi+1 − xk
6: Perform projection onto the λ-ball

yk+1 = projBλ(yk + σKx̄k+1)

7: k = k + 1
8: end while

which, using the procedure explained in Appendix A, yields:

x̄i = sign(xi−fi) max(|xi−fi|−τ, 0), ∀i = 1, . . . , n. (15)

Therefore, we can make use of the numerical scheme presented
in Algorithm 3. Let us remark the fact that every operation is
perfomed pixel-wise.
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Algorithm 3 Chambolle-Pock Method for TV-l1 Denoising

1: Choose λ > 0, τ, σ > 0, k = 0.
2: Set number of iterations niter.
3: while k < niter do
4: Calculate the auxiliary value: x̂k+1 = xk − τ(K>yk)
5: Calculate the proximal step for the primal function

xk+1 = f + sign(x̂k+1 − f) max(|x̂k+1 − f | − τ, 0)

6: Calculate the interpolation step x̄k+1 = 2xk+1 − xk
7: Perform projection onto the λ-ball

yk+1 = projBλ(yk + σKx̄k+1)

8: k = k + 1
9: end while

IV. NUMERICAL EXPERIMENTS

For the numerical experiments presented in this work we
will be using both a set testing images with synthetic noise
and the dataset provided in [9], this dataset provides real noise
generated for high resolution images of playing cards. This
dataset was obtained using a PhaseOne XF medium format
camera equipped with an achromatic IQ260 digital back
and a PhaseOne Digita AF 120mm F4 lens. The equipment
used generated 16 bit TIFF images of 8964x6716 pixels.
The images were shot with an ISO of 3200 and a histogram
approximately spanning a quarter of the full dynamic range,
yielding an image that contains noise generated from round-
off errors from the digital-analog conversor, photon counting
noise and electronic noise.

Since all operations for the numerical methods described
previously are applied pixel-wise, we can make use of parallel
computation efectively. In this work, we used CUDA parallel
programming [10] to implement the update for the numerical
schemes presented for the chambolle-pock method for both
ROF and TV-l1 denoising problems.
For the CPU computations, all methods described above were
implemented using python Numpy [11] numerical libraries,
and all the GPU computations were coded using PyCUDA
[12] with kernels written in C.

All the presented experiments where executed in the Mode-
Mat HPC Cluster, this facility provided us with Xeon Phi
processors for the CPU computations and NVIDIA Tesla K80
GPU coprocessors for the GPU computations.

A. ROF Model

We tested the Forward-Backward (FB) and Chambolle-Pock
(CP) primal-dual methods against a set of images: Circle
(106x106 px), Cameraman (256x256 px) and Lena (512x512
px) using both the CPU and GPU implementations. The results
are presented in Table I, this synthetic images presented addi-
tive gaussian noise with 0 mean and 0.2 variance. In Table II
the results over the real noise dataset with the following set
of images: Playing Cards 1 (1280x720 px - HD Resolution),
Playing Cards 2 (1920x1080 px - FullHD Resolution), Playing

TABLE I: ROF Model Processing Time

Image FB CPU CP CPU CP GPU
time (s) time (s) time (s)

Circle 0.0877± 0.008 0.0791± 0.001 0.0261± 0.004
Cameraman 0.4499± 0.008 0.4064± 0.001 0.0269± 0.001

Lena 1.7019± 0.007 1.6732± 0.069 0.0358± 0.001

TABLE II: ROF Model Processing Time

Image FB CPU CP CPU CP GPU
time (s) time (s) time (s)

Playing Cards 1 7.89± 0.12 7.26± 0.02 0.067± 0.01
Playing Cards 2 24.40± 0.06 21.60± 0.16 0.118± 0.01
Playing Cards 3 585.04± 0.98 511.36± 0.81 1.717± 0.01

TABLE III: TV-l1 Model Processing Time - Synthetic Noise

Image CP CPU CP GPU
Circle 0.094254± 0.000323 0.025320± 0.000736

Cameraman 0.456685± 0.000841 0.026760± 0.000779
Lena 1.802704± 0.003430 0.037916± 0.000587

TABLE IV: TV-l1 Model Processing Time - Real Noise

Image CP CPU CP GPU
time (s) time(s)

Playing Cards 1 8.23238± 0.030 0.067131± 0.001167
Playing Cards 2 24.16407± 0.051 0.128384± 0.007352
Playing Cards 3 599.70860± 0.754 1.895479± 0.003539

TABLE V: ROF Model Processing Time Low CPU

Image FB CPU LOW CP CPU LOW CP GPU
Circle 0.180± 0.02 0.139± 0.01 0.0261± 0.004

Cameraman 1.395± 0.10 0.872± 0.05 0.0269± 0.001
Lena 5.971± 0.01 5.358± 0.1 0.0358± 0.001

TABLE VI: TV-l1 Model Processing Time Low CPU

Image CP CPU LOW CP GPU
Circle 0.16± 0.01 0.025± 0.001

Cameraman 0.935± 0.3 0.027± 0.001
Lena 6.06± 0.1 0.038± 0.001

Cards 3 (7680x4320 px - UltraHD Resolution).
For the experiments, in the synthetic dataset we used 100 runs,
the mean and standard deviation values are reported in the
corresponding tables. In the case of the real noise dataset we
used 10 trials with the same values reported.

B. TV-l1 Model

In Table III and Table IV we tested Chambolle-Pock (CP)
CPU and GPU implementations against the same set of images
described in the previous experiment. The synthetic images
generated presented additive impulse noise.
For comparison purpouses in Tables V and Table VI the results
of the paralell version of the algorithms is compared with the
performance using a desktop computer using a traditional Intel
Core i5 processor.

V. CONCLUSION

In this work we can see that the ROF and TV-l1 image
denoising models can be formulated using a saddle point
formulation. This formulation allows Chambolle-Pock method
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(a) Original (b) CUDA ROF Denoised (c) CUDA TV-l1 Denoised

Fig. 4: Image denoising examples using a CUDA Implementation Chambolle-Pock method for ROF Model (4b) and TV-l1
model (4c) regularizers with λ = 0.2. This image patch corresponds to an UltraHD Resolution Image, the execution time for
the algorithm was 1.89548 seconds.

to implement an algorithm to find a solution that presents some
separability properies, since the proximal operators obtained
can be implemented pixelwise. Therefore, we can make use
of parallel computation. In particular we used CUDA paral-
lel computation which yields dramatic speedups for finding
solutions when compared with pure serial implementations.

APPENDIX A
‖x− f‖1 PROXIMAL OPERATOR

We can formulate the proximal operator as:

argmin
x̄
‖x− f‖1 +

1

2τ
‖x̄− x‖ (16)

We know that x̄ is a minimizer argument of (16) if and only
if it satisfies the following optimization criteria:

0 ∈ ∂‖x̄− f‖1 + (x̄− x),

x ∈ τ∂‖x̄− f‖1 + x̄

We know that the l1-norm is separable, therefore we can
analyze this equation component-wise. Let us take the case
x̄i 6= 0 then ∂‖x̄i − fi‖ = sign(x̄i − fi), then:

xi = τsign(x̄i − fi) + xi,

x̄i = xi − τsign(x̄i − fi),
x̄i − fi = xi − fi − τsign(x̄i − fi)

If x̄i−fi > 0 then xi−fi < −τ and x̄i−fi < 0 then xi−fi >
τ . Hence, |xi − fi| > τ and sign(x̄i − fi) = sign(xi − fi).
If x̄i − fi = 0 then,

0 ∈ fi − xi + τ [−1, 1],

xi − fi ∈ [−τ, τ ],

|xi − fi| ≤ τ
Therefore, the proximal operator can be written as

proxτ∂g(x) = x̄i − fi,

=

{
0 if |xi − fi| ≤ τ,
xi − fi − τsign(xi − fi) if |xi − fi| > τ

This condition can be written in a more compact form:

proxτ∂g(x) = max{|xi − fi| − τ, 0}sign(xi − fi) (17)
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