
LATIN AMERICAN JOURNAL OF COMPUTING - LAJC, VOL. IV, NO. 2, NOVEMBER 2017 29

Children learning of programming: Learn-Play-Do
approach

Julián-Andrés Galindo, and Monserrate Intriago-Pazmiño

Abstract—Writing computer programs is a skill that can be
introduced to children and adolescents since early ages. Although
children can gain skills in coding, there is a lack of motivation
and easiness at the time to write logic structures. It raises the
question, how can children be encouraged to code in a successful
environment of learning and fun?. To address this question,
this paper shows an experimental approach called ”Learn-Play-
Do” for introducing children in the programming. It shows that
(1) it is feasible for children to learn about programming by
following the proposed approach with (2) encouraging levels of
learning, usefulness content and self-learning programming in
(3) a developing country context. The results of an empirical
experimentation with forty-one children are reported. This work
was implemented as a social project linking the university with
the community.

Index Terms—Computers & programming, children learning,
Scratch.

I. INTRODUCTION

W riting computer programs is a skill who can be
introduced since early ages [1], [2]. Papert argued

the main learning benefit is called the ”Piagetian learning,”
or commonly called ”learning without being taught” [3].
It has been reported as an effective device for a cognitive
process instruction focus on teaching how rather than what.
Through that, children can model abstract concepts to help
them to develop skills such as classification, meta-cognition,
left and right orientation, verbal memory and creative thinking.

Many issues have been reported about children learning of
programming, documented by the UK’s Computing Research
Committee [4]. These issues involve a lack of motivation,
easiness, and formal teachers training to guide young learners
with enthusiasm and pro-activity. As a result, programming is
seen as a boring, difficult and frustrating activity. Therefore,
it seems like children and teachers need an approach more
interactive to overlap engagement, fun, and learning.

Furthermore, some interactive environments has been
released such as LEGO WeDo [5], Raptor [6], Scratch

Article history:
Received 15 September 2017
Accepted 28 November 2017

J.A. Galindo is a professor at the Departamento de Informática y Ciencias
de la Computación, Escuela Politécnica Nacional, Quito, Ecuador. He is also a
PhD candidate at the Laboratoire d’informatique de Grenoble, Grenoble Alps
University (UGA), Grenoble, France (e-mail: julian.galindo@epn.edu.ec)

M. Intriago-Pazmiño is a professor at the Departamento de Informática y
Ciencias de la Computación, Escuela Politécnica Nacional, Quito, Ecuador
(e-mail: monserrate.intriago@epn.edu.ec)

[7], Tinker [8] and Turtle Math [9]. These tools allow
children to access to a complete set of features to build
programs in online and offline settings. These features mainly
include audio and video, events, logic sequences, conditions,
loops and images control. However, technology itself is
still not enough. First, children have been reported with
cognitive issues to learn programming such as divergent
thinking, awareness of comprehension failure, reflectivity and
impulsivity, operational competence and receptive vocabulary
[1]. Second, science learning emerges other children issues
which include (1) children conception of the world and their
influence at science learning, (2) language disabilities, (3)
the role of the science teacher, (4) analysis of a teaching
model and (5) the implications in the curriculum and teacher
education [10]. Hence, technological solutions promote the art
of programming. It requires a global and transversal approach.

This complex vision may be addressed by the
implementation of an experimental project [11]. We introduce
its core component Learn-Play-Do and We shall show the
results of the first round with University students (fulfilling
the instructor role) and children attending primary school.
The key findings of using Learn-Play-Do reveals that (1)
children learn by following its two stages (play and do)
with (2) a valuable degree in learning, content usefulness
and self-learning in programming with (3) children in an
Ecuadorian context.

The rest of this article is organized as follow. The second
section presents the related work about programming interac-
tive environments for children. The third section describes the
Learn-Play-Do approach. In the fourth section, we describe the
design of our experimental study. In the fifth section, we report
our experiment’s results that compile the first experiences with
this approach. The sixth section contains some discussions and
limitations of this study. Finally, some conclusions and future
works are presented.

II. RELATED WORK

There are many approaches to teach children about
programming. To begin, the book ”Teach your kids to code”
shows a traditional manner to learn where children are
exposed to a console to write commands in Python and then
check its output in a Graphical User Interface (GUI) (see
Fig. 1). Although, this project restates the need of exploring
coding in a fun environment with valuable principles such
as ”do it together”, ”Coding = Solving problems” and

ISSN: 1390-9134 - 2017 LAJC

30 LATIN AMERICAN JOURNAL OF COMPUTING - LAJC, VOL. IV, NO. 2, NOVEMBER 2017

Fig. 1. Python project [2]. 1) program output, 2) source code.

Fig. 2. Turtle math project. a) turtle turner tool and b) the label lines tool.

”Explore!”, the method remains in text commands which is
useless for children in level 0 (2-7 years) and level 1 (5-10
years) as reported in the project ”Should Your 8-year-old
Learn Coding?” [2]. Thus, this traditional approach should be
taught to children at level 3 (12 years and up) which rises a
learning curve wall for others.

In the Turtle math project (see Fig. 2) building text and
graphical relationships are exposed. It can be considered as
a version of Logo for learning mainly mathematics [9]. This
approach is based on six research principles which expose
children (in upper elementary grades) and teachers in an
interactive environment. It includes visual elements and text
commands to control paths, shapes, scaling, coordinates,
motions, drawing and number activities. The main principle
related to programming is ”maintain close ties between
representations”. This argues that explicit relationships
between programming codes and drawings are essential.
Children often lose these connections so that they need
to write, save commands and see them run immediately.
Although this approach underlines programming, fun seems
like a fuzzy element in the interaction. The User Interface
(UI) does not encourage children to play as coding because
it has a lack of aesthetics and usability expressed mainly in
the activity windows. For instance, children need to code
by hand commands which may cause compiling errors (low
usability) as well as a growth of negative user learning. A
feature which can be faced by the introduction of interactive
UI elements such as drag and drop widgets.

Another interesting approach is writing computer programs
by using digital storytelling. It allows children to draw
stories with a computer program where their imagination
and composing skills are mixed with digital elements. In the
1990s, it became more popular including visual images and
written text that expanded the student comprehension [12].

Fig. 3. Scratch project interface. 1) starting UI, 2) interactive UI, 3) visual
elements and 4) script UI.

Then, Mitch Resnick in his TED conference emphasized the
production of digital content by the expression “Learn to
code and code to learn” where children develop writing and
community learning skills by coding [13], [14].

Consequently, mixing writing skills and technology to
combine audio, text, and video emerges a growing strategy
to engage youth into computer programming. It was shown
by Kelleher at designing a Storytelling program called Alice
[15]. She argues that many girls begin to turn away from
math and science-related disciplines (computer science) at
the middle school. This programming environment provides
to middle school girls a positive initial experience with
computer programming as a means to the end of storytelling
rather than an end in itself. A motivating activity for middle
school girls at Pittsburgh.

Following this last approach, another robust research
project was found named Scratch [7]. Scratch as a method
to collect and test kids’ imagination allows them to create
stories by a drag-and-drop block process. Kids stick the blocks
together, forming code scripts as similar as developers create
code lines in a web language such as python, C#, Java, and
others. Then, when the code script is finished, kids can run
it to bring to life the scratch characters of the screen. Using
this tool, kids can create robust digital stories because every
scratch block can represent text, audio or a video element
to create an interactive story. For instance, Fig. 3 shows a
Scratch project called “Super Buho Bros”. It is part of the
”Red Juega y Aprende” social project [16]. “Super Buho
Bros” project aims to learn English vocabulary of animals as
playing in a super Mario and fun environment. When a kid
run the project, he will interact with the animations, read the
English words and listen to the audios. Thus, Scratch projects
represent a child ability to coordinate a different set of blocks
to create projects as complex as they want to.

In spite of this, digital storytelling demands further
examination in (1) the efficiency and clarity of the
scripts produced by children, (2) the potential relation
of programming and content, (3) analysis of imaginative and
aesthetics features and (4) more broad studies to validate its

GALINDO AND INTRIAGO : CHILDREN LEARNING OF PROGRAMMING: LEARN-PLAY-DO APPROACH 31

impact in children learning [17].

Overall, all approaches clarify the challenge to balance UI
interaction, learnability, and playfulness. First, the traditional
method (text-based) may be found difficult for children at early
ages. Second, although there are advances in GUI, there is still
a lack of aesthetics, usability in conjunction with enjoyability.
Third, the storytelling approach by using visual elements
helps children to learn about coding by mixing elements
such as narration, creativity, and communication. Despite this,
further examinations are mainly needed to validate the relation
between digital content production and coding in children
learning by these highlights.

III. LEARN-PLAY-DO APPROACH

From the related work, it is highlighted that children
may learn to code by harmonizing a rich UI in a fun
way. Since this lesson learned, our experimental approach
relies on two simple stages: Play and Do. The first stage
exposes children to play interactive games (made for tutors)
which aims to introduce children to the environment by
playing instead of coding. Then, with this gained knowledge,
children have the opportunity to create their own programs
with a tutor assistance at the Do stage which attempts to
promote a cognitive [18], social [19] and emotional [20] child
development. It is expected that as children gain knowledge -
in a Play and Do spiral - the tutoring will be less required.

Now, to ensure the children learning process during
these stages, the approach is also underlined by the Suzuki
methodology [21] [22] [23]. This learning method can be
summarized by: results = desire + repeat [24]. Suzuki
argues that one learns only by continual practice of basic
or main concepts. For instance, when children are taught
mathematics in an exiting(fun) and interesting manner
they develop a desire to repeat the learned activities [24].
Consequently, in our context, results(Learn) = desire(Play)
+ repeat(Do). Desire will be attached to our Play stage
which should encourage children to do or perform activities
again (repeat). Therefore, desire (Play) + repeat (Do) should
evoke results to keep children in a continuous learning growth.

To be consistent, the approach should cover also the fol-
lowing factors or principles of Suzuki’s methodology:

• Listening
• Memory
• Motivation
• Vocabulary
• Repetition
• Parental Involvement
• Step by Step Mastery
• Love
Listening: By listening and watching to video recordings of

the interactive lessons given by tutors, children should learn
the coding language and UI interaction just as they absorb
the sounds of their mother tongue to interact with others.

Memory: Through repetition and listening to the recordings,
the child will code from memory which is a skill they can use
with other educational aspects (reading and maths). Coding
by text commands is postponed until the child is able to code
by drag and drop elements, just as we only teach children
to read after they can speak fluently. In this way, the tutors
can concentrate of the child’s coding development of main
factors such as start and stop programs (events and sensing),
adding pictures, videos, widgets (look and sound), repetitive
and conditional actions (control) and widget actions (motion
and operators).

Motivation: Daily practice of games is encouraged to build
the child’s abilities and confidence. As the child masters
a particular game (program) the motivation and sense of
achievement will move them on to the next game in a desire
to learn more. All students follow the same games sequence
so that an standard repertoire provides strong motivation as
younger children want to code games they hear older students
code. Parent involvement will motivate children and give
them a sense of achievement and makes playing an enjoyable
experience.

Vocabulary: At the beginning, children should regularly
repeat all previously learned games and code exercises to
expand his instructions knowledge(vocabulary) and o reuse
it in future programs. Just as in learning to speak, the entire
vocabulary and grammar are used, not just the most recently
learned words. In this way, the child gradually expands his
cognitive abilities to solve problems by reusing code.

Repetition: Through constant repetition of games, children
strengthen old skills and gain new ones. The technique is
developed through the study and repetition of these games.
Students can interact with their games to see the progress
they have made.

Parental Involvement: It is required a three-way partnership
between the child, the tutor, and the parent by working
together. Parents need to go to tutor lessons to serve as home
teachers. With this, a more enjoyable environment is made
where children can consolidate the teaching given by the tutor.

Step by Step Mastery: Every child learn by building small
coding steps so that they need to start with easy games or
programs to master coding gradually.

Love: Tutors and parents should have a strong level of
empathy, patient, tolerance, and creativity to guide and
reinforce children learning.

IV. EXPERIMENTAL STUDY

The experimental study aims at exploring how feasible is
children learning by using Learn-Play-Do approach. We will
show that children learn programming following two stages
(Play and Do) with an interactive tool ”Scratch”. The following
section will underline the experimental protocol.

32 LATIN AMERICAN JOURNAL OF COMPUTING - LAJC, VOL. IV, NO. 2, NOVEMBER 2017

A. Goal and hypothesis

The objective of this experiment is to examine the degree
of learning and likeness during the exposition of children with
Learn-Play-Do as a first attempt to understand how to teach
children about programming. So the experiment’s hypothesis
are:

• H1: children learn by their exposition with Learn-Play-
Do approach.

• H2: children like the games’ content.
• H3: children are able to code by themselves basic pro-

grams.

B. Experimental method

A quantitative research method was used [25], where
children could interact with all games by following their
preferences in a face-to-face tutor support. First, children
interacted with the games only by playing. In Play stage,
every two-children had a tutor who introduced them how
to play by almost 20 minutes. Second, one tutor taught all
the group how to create a single game by interacting with
Scratch in a 20 minutes session. During Do stage, children
are supported by their tutor to understand clearly the basic
coding instructions by following the drag-and-drop interface
from Scratch. Then, every child was challenged to make their
own game by reusing the code of the previous stage. In this
last part of the Do-stage, children had the opportunity to use
their creativity and learned skills to develop a basic but fun
game in a 20-minutes-period. Finally, a survey was provided
by tutors to children to gather all their impressions about the
programming experience.

C. Participants

For all sessions, 41 children participated in the experiment
from the Dominicas de la Inmaculada Concepción primary
school with 20 tutors (University students). This children
group is distributed in 19 (under 6 years old), 1 (7 to 9),
18(10 to 11) and 3 from 12 to 14 years old. Furthermore,
and 2 professors at Computer Science Faculty who guided
whole experiment sessions. They supported and reinforced
the learning process.

D. Materials

Five games were made for University students by using
Scratch to expose children to interact with. Those ones
include the body, the instruments, the numbers, the animals
and the transport game that we will explain below.

1) Body Parts: The game has two options for body parts
(see Fig. 4). It has its own audio and image. Once both are
present, a question concerning launches into a body part
which must be correctly selected. They must complete a total
of five hits to win, otherwise, they lose. It reinforces the body
parts in English.

Fig. 4. Body Part Game

Fig. 5. Instruments Game

2) Instruments: The game features two choices of musical
instruments (see Fig. 5), which have their own audio and
image, once both presented a question regarding a musical
instrument which shall be selected appropriately launches.
They must complete a total of five hits to win, otherwise,
they lose. It aims to help children to recognize musical
instruments in English.

3) Numbers: It allows children to do a review of the
numbers 1 to 9 in English while showing us the correspondent
quantity of different elements per number (see Fig. 6). For
instance, at showing the number ”3”, three soccer balls are

Fig. 6. Numbers Review

GALINDO AND INTRIAGO : CHILDREN LEARNING OF PROGRAMMING: LEARN-PLAY-DO APPROACH 33

Fig. 7. Animals Game

Fig. 8. Transport Game

shown and the English word ’three’ is playing. Hence, children
can learn about the quantity and also the relation with sound
and visual interaction.

4) The animals game: The game is designed to learn
to differentiate vertebrates invertebrates, supporting English
(see Fig. 7). We also have three ways to play. Vertebrate or
invertebrate, here children need to locate the correct animal
in the respective box classification, vertebrate or invertebrate.
For the Roulette questions, it is necessary to spin the wheel
with the space-bar, then we generated a question which has
three options A, B and C, where one of these is the correct
answer.To catch animals, an augmented reality game is shown
for which it is necessary to use a webcam.

5) Transport: The game features two transportation
options, each has their own audio and image (see Fig. 8).
The main goal is a reinforcement of the means of transport
in English. During the game, once both are present audio and
image a question appears concerning a means of transport
which shall be selected appropriately. Children must complete
a total of five hits to win, otherwise, they lose.

6) Survey: A paper-based questionnaire was used to gather
children impressions. It involved six questions regarding with
the age, gender, learning degree, content usefulness, training
likeness and coding independence.

Fig. 9. About learning degree. Answers to the question: What grade of
learning did you achieve through the game used?

Fig. 10. About content usefulness. Answers to the question: How useful is
the exposed content?

V. RESULTS

Two resulting products are reported. Fully developed
games for children and their responses to the Learn-Play-Do
approach. First, children games were published in [26].
Almost all games had a basic interaction as expected;
however, a few children were able to modify the game
”Super Mario Bros” by including new characters. Second, the
following section will explore the key points regarding the
gathered responses.

1) Learning degree: The results confirm that children
learned coding with almost 56% and 29% for an acceptable
and sufficient level (see Fig. 9). Reaching approximately 15%
of low gained knowledge.

2) Content usefulness: Children liked the content of games
(materials section) revealing almost 85% of a positive content
reception and 15% as a negative one (see Fig. 10).

3) Coding independence: Mostly all children remained
with confidence at programming with approximately 78%
(see Fig. 11). In consequence, an group of 8 children did not
learn enough to develop their own program.

34 LATIN AMERICAN JOURNAL OF COMPUTING - LAJC, VOL. IV, NO. 2, NOVEMBER 2017

Fig. 11. About writing new code. Answers to the question: After this training,
could you create your own code?

VI. DISCUSSION

Programming can be introduced to children through many
interactive platforms since plaint-text tools until rich user
interfaces. However, this activity becomes harder at facing
discouragement and good support at coding logic structures.
Hence, it is valuable enough to explore an approach to
encourage children at coding as keeping a learning and fun
environment.

In this study, we have identified three main findings.
First, most children reflected a positive learning degree with
almost 85% after their exposition with ”Learn-Play-Do”
(H1). This fact is related to previous studies where children’s
performance reached a mean score of 64% programming by
using Scratch [2]. Here, there was also a valuable factor to
encourage learning beyond technology identified as affect. In
fact, it was seen not only as an accompaniment but also as
a source of motivation. As stated by Duncan ”Learning will
hardly progress without motivation, and that is stirred and
maintained by positive affect”. It supports the Learn-Play-Do
approach where learning should be driven by a combination
of fun (play) and repetitive activities (do). Thus, it suggests
that learning may gain important levels in children when
affect elements are shown such as motivation and fun aligned
with technology.

Second, a low level of 15 percent was revealed in content
likeness by children at interacting with the pack of 11
developed Scratch games (H2). Although it could be seen
also a matter of novelty in children, there is positive evidence
of longer children exposition with contents developed in
Scratch shown in [2]. These contents included interaction
with geometric shapes, sprites, scratch cards and audio files
trough tasks such as order, selection, sequence, movement,
coordination, and synchronization. Furthermore, it was argued
that Scratch was beneficial and fun in an 8-weeks-period for
children overpassing mere novelty. Therefore, a cyclical and
longer exposition may be needed to confirm or validate the
positive attraction of the content games.

Third, the majority of children showed a high level of
coding independence with 78% (H3). Similarly, Burke
and Kafai found that 9 out of 10 children knew more

programming after their exposition with Scratch into a
Storytelling process [17]. These technical skills included
programming concepts such as object-oriented and sequential,
sprite to sprite conditionals, looping, boolean variables,
sampling scripts and if-then statements. Hence, children are
able to increase their development skills trough Scratch;
however, our study does not measure the performance of
individual logic structures(e.g. if-then or do-while). Hence,
it suggests a more deep analysis in the manner of children
code which may confirm the gained levels in coding by logic
structure toward a bottom-up approach.

1) Experiment limitations: Although these initial
experimental results are encouraging, some restrictions
should be noted. First, children should have more exposition
to the approach which can clarify the impact of learning.
Second, Learn-Play-Do approach used Scratch as an
interactive tool for programming. However, there are other
tools which could release other insights such as Lego Boost
and Lego Mindstorms. Lastly, even when the initial games
were quite easy to understand and explore their programming;
it should be advisable to increase games difficulty according
to children age and also the definition of a formal method of
games assessment.

Overall, this experimental results reveals mainly that it is
possible to use the Learn-Play-Do approach to achieve initial
levels of (1) learning, (2) content usefulness, and (3) coding
independence which need a deeper and longer exposition to
validate and/or extend its degree of learning by children.

VII. CONCLUSIONS AND PERSPECTIVES

This paper presents an approach denominated Learn-Play-
Do for learning about code programming for children and
an experiment to show its initial results. It validates that it
is feasible for children to introduce them in learning pro-
gramming skills by following the stages Play (fun) and Do
(repetitive) with the interactive tool ”Scratch” in the first round
of the social project. Children revealed a valuable level of
learning, content usefulness and coding independence. More
experiments will be necessary to prove the knowledge recep-
tion in order to validate and/or extend the approach(stages
and principles) with more children groups and experiment
conditions. From the created games for children, more analysis
in the script(code) could reveal the level of learning gained per
child with more deep detail in logic sequences, variables and
UI actions definition.

ACKNOWLEDGMENT

The authors wish to thank God, reviewers and our price-
less family as well as University students for their support,
highlights and quality time.

REFERENCES

[1] D. H. Clements and D. F. Gullo, “Effects of computer programming on
young children’s cognition,” Journal of educational psychology, vol. 76,
no. 6, p. 1051, 1984.

GALINDO AND INTRIAGO : CHILDREN LEARNING OF PROGRAMMING: LEARN-PLAY-DO APPROACH 35

[2] C. Duncan, T. Bell, and S. Tanimoto, “Should Your 8-year-old Learn
Coding?” in Proceedings of the 9th Workshop in Primary and Secondary
Computing Education, ser. WiPSCE’14. New York, NY, USA: ACM,
2014, pp. 60–69.

[3] J. Lochhead and J. Clement, Cognitive Process Instruction. Research
on Teaching Thinking Skills. ERIC, 1979. [Online]. Available:
https://eric.ed.gov/?id=ED234997

[4] UKCRC, “UK Computing Research Committee,” 2010. [Online].
Available: http://www.ukcrc.org.uk/

[5] K. Mayerov?, “Pilot activities: LEGO WeDo at primary school,” in
Proceedings of 3rd International Workshop Teaching Robotics, Teaching
with Robotics: Integrating Robotics in School Curriculum, 2012, pp. 32–
39.

[6] M. C. Carlisle, T. A. Wilson, J. W. Humphries, and S. M. Hadfield,
“RAPTOR: A Visual Programming Environment for Teaching Algorith-
mic Problem Solving,” in Proceedings of the 36th SIGCSE Technical
Symposium on Computer Science Education, ser. SIGCSE ’05. New
York, NY, USA: ACM, 2005, pp. 176–180.

[7] M. Resnick, J. Maloney, A. Monroy-Hern?ndez, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and
others, “Scratch: programming for all,” Communications of the ACM,
vol. 52, no. 11, pp. 60–67, 2009.

[8] H. Lieberman, “Tinker: A programming by demonstration system for
beginning programmers,” Watch what I do: programming by demon-
stration, vol. 1, pp. 49–64, 1993.

[9] D. H. Clements and J. S. Meredith, “Turtle math,” Montreal: Logo
Computer Systems (LCSI), 1994.

[10] R. Osborne and P. Freyberg, The Implications of Children’s Science.
Heinemann Educational Books, Inc, Jan. 1985.

[11] G. Julian and I. Monserrate, “Proyecto EPN-FIS de Vinculación Social,
Programación para niños Red Juega y Aprende.” 2015.

[12] G. Kress, “Visual and verbal modes of representation in electronically
mediated,” Page to screen: Taking literacy into the electronic era, p. 53,
1998.

[13] M. Resnick, “Learn to Code, Code to Learn,” 2013. [Online]. Available:
https://scratch.mit.edu/

[14] ——, “Scratch day,” EdSurge, May, 2013.
[15] C. Kelleher, J. Hodgins, and S. Kiesler, “Motivating Programming: using

storytelling to make computer programming attractive to more middle
school girls,” 2006.

[16] Red juega y aprende, “Interactive game, Super Buho Bros
at the Scratch MIT network,” 2015. [Online]. Available:
https://scratch.mit.edu/projects/45950952/#editor

[17] Q. Burke and Y. B. Kafai, “Programming & storytelling:
opportunities for learning about coding & composition,” in
Proceedings of the 9th international conference on interaction
design and children. ACM, 2010, pp. 348–351. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1810611

[18] J. Piaget, “Part I: Cognitive development in children: Piaget development
and learning,” Journal of research in science teaching, vol. 2, no. 3, pp.
176–186, 1964.

[19] A. Kozulin, Vygotsky’s educational theory in cultural context. Cam-
bridge University Press, 2003.

[20] N. Chomsky, “A review of BF Skinner’s Verbal Behavior,” Language,
vol. 35, no. 1, pp. 26–58, 1959.

[21] S. Suzuki and W. Suzuki, Nurtured by love: The classic approach to
talent education. Alfred Music, 1983.

[22] E. Hermann, Shinichi Suzuki: The Man and His Philosophy (Revised).
Alfred Music, 1999.

[23] S. Suzuki and M. L. Nagata, Ability development from age zero. Alfred
Music, 2014.

[24] D. G. Hazlewood, S. Stouffer, and M. Warshauer, “Suzuki meets P?lya:
teaching mathematics to young pupils,” The Arithmetic Teacher, vol. 37,
no. 3, p. 8, 1989.

[25] N. Mandran, “Méthode de conduite de la recherche en informatique
centrée humain : processus et inclusion d’une démarche centrée utilisa-
teur,” Ph.D. dissertation, Nov. 2015, working paper or preprint.

[26] Red juega y aprende, “Scratch - Imagine, Program, Share,” 2015.
[Online]. Available: https://scratch.mit.edu/studios/932042/

Julian-A. Galindo was born in Quito,
Ecuador, in 1982. He received a bachelor
degree in informatics engineering from
Central University, UCE, Quito, Ecuador,
in 2007. The Master in Information Tech-
nology from James Cook University, JCU,
Townsville, Australia (2012). In 2014, he
joined the Faculty of Engineering in Sys-

tems, National Polytechnic School, EPN, as a Professor. Since
October 2016, he has been working with the ”Laboratoire
d’informatique de Grenoble”, LIG, Grenoble Alps University,
UGA, Grenoble, France as a PHD student in the domain of
Human Computer Interfaces. His research interests include
children’s learning, user interfaces, programming, adaptation,
user modeling and music analysis.

Monserrate Intriago-Pazmiño was born
in Chone, Ecuador, in 1984. She received
the B.S. degree in Computer Science
Engineering from National Polytechnic
School, Quito, Ecuador, in 2007 and the
M.S degree in Computer Science from the
Technical University of Madrid, Spain, in
2011. She is currently a Ph.D. candidate

in Computer Science at Technical University of Madrid.
From 2008 to 2009, she was Assistant Professor with the
Department of Informatics and Computer Science, National
Polytechnic School. Since 2011, she has been a member of
the Biomedical Informatics Group, Technical University of
Madrid. Since 2014, she has been Professor at the Department
of Informatics and Computer Science, National Polytechnic
School. Her research interests include programming, software
development, biomedical informatics, machine learning.

