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Resumen— Encontrar la función más corta 
en los sistemas de conmutación es una 
necesidad para el desarrollo de sistemas 
automáticos eficientes. Actualmente, existen 
varias metodologías que tienen como objetivo 
solucionar esta necesidad con diferentes 
técnicas. Este artículo propone una nueva 
metodología para encontrar una fórmula 
proposicional que describa un problema 
de un sistema de conmutación utilizando 
varias tablas de verdad que se basan en una 
original, estas tablas se generan utilizando 
los principios y permutaciones del Código 
Gray. Como se mostrará, el código utilizado 
tiene una relación directa con los caminos 
hamiltonianos, donde cada permutación es una 
conexión diferente en un hipervolumen y cada 
nodo se representa como una combinación 
de bits. Para verificar y validar el método, se 
desarrolló un algoritmo utilizando el MATLAB 
y se comparó con las soluciones del software 
Boole-Deusto. Finalmente, se presentan 
ejemplos de ejecución, comparación de costos 
computacionales y propuestas de trabajos 
futuros.

Palabras Clave— Caminos hamiltonianos, 
código Gray, funciones booleanas, hipercubo, 
problemas discretos, sistemas de conmutación

Abstract— Finding the shortest function 
on switching systems is a necessity for the 
development of efficient automatic systems. 
Currently, several methodologies aim to 
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Switching Systems Synthesis Method Using Permuted Gray Code Tables 
(PGC Method)

Fig. 1 Multidimensional representation of a Gray code table 
permutation.
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solve this need with different techniques. 
This article proposes a new methodology to 
find a propositional formula that describes a 
switching system problem using several truth 
tables which are based on an original one; these 
tables are generated using Gray Code principles 
and permutations. As it will be shown, the used 
code has a direct relation to the Hamiltonian 
paths, where each permutation is a different 
connection in a hypervolume, and each node is 
represented as a bit combination. An algorithm 
was developed using MATLAB and compared 
with the solutions from the software Boole-
Deusto to verify and validate the applicability 
and implementation of the method. Finally, 
examples of execution, computational cost 
comparison and future work proposals are 
presented.

Keywords— Boolean functions, discrete 
problems, Gray Code, Hamiltonian Paths, 
hypercube, switching systems. 

I. INTRODUCTION
The solution of switching systems problems is 
of increasing importance in the development 
of modern technologies as well as in the 
implementation of automated control 
strategies. Thus, some authors like P. Roth [1], 
Quine [2] or Karnaugh [3] made much effort 
to improve the efficiency of these solutions. 
In propositional logic, a truth table defines 
a problem and a propositional formula (also 

known as truth function or Boolean function), 
can be obtained to describe any given truth 
table. Several methods can be used to obtain 
this formula, e.g. Veitch chart, Karnaugh 
map [4], minterms, maxterms [5] or Boolean 
algebra. However, as recognized by Quine [2], 
“The quest is to descry a technique to find the 
shortest truth-function formula” or by Veitch 
[6] “The problem is how to depict a Boolean 
function of “n” variables so the human eye 
can quickly see how to simplify the function”. 
Veitch and Karnaugh used graphical methods, 
but higher-order problems present severe 
difficulties since the method involves human 
inspection.

This work proposes a new method to find a 
propositional formula that describes a switching 
system problem. Based on the original truth 
table, Gray code principles and permutations 
[7] are used to generate multiple truth tables. 
Gray codes are named after Frank Gray who in 
1947 patented the idea of generating a binary 
codification that is used in applications that 
depends essentially on the bits looping. They 
are represented as a function G(i) where the 
consequential G(i+1) differ in exactly one bit 
[8], it is essential to note that the permuted 
tables that start with Gray code structure will 
maintain that property in all permutations. The 
advantage of using Gray codes to rearrange the 
truth tables, as will be explained in the method, 
lies on generating clusters that can be grouped 
and simplified using Boolean algebra theorems 
like identities and complements. 

To verify and validate the proposed method, an 
algorithm using MATLAB 2014b is developed 
and tested with 2 to 7 bits logic tables. The 
computations are performed on a 64-bit 
architecture Intel XEON E3-1505M 2.80 GHz 
with 32 Gb RAM personal workstation capable 
of achieving a propositional formula that 
adequately solves the original switching system 
truth table. The solutions from the current 
method are compared with the solutions from 
the software Boole-Deusto [9].

II. METHOD
The Gray code tables present a single bit 
variation in each row, allowing to identify 
groups (2n members) of bits with a ‘true’ logic 
output that can be simplified. By permuting the 
columns of the Gray table, all possible clusters 
appear. The approach used has a direct relation 
with the Hamiltonian paths in hypercubes [10] 
where each permutation is a different path, and 
each node (vertex) is represented as a row (bit 
combination) of the truth table as can be seen 
in Fig. 1 [11]; transforming a multidimensional 
analysis into a unidimensional one. The right 

side of Fig. 1 shows a hypercube, whose 
vertices represent all possible combinations of 
the permutation. The vertices with a filled circle 
are the returned true outputs, and the vertices 
with the empty circle are the false outputs. 
Also, the arrows show the Hamiltonian path for 
the given Gray code truth table permutations 
that are represented in the left side of Fig. 1.

The algorithm of the proposed method 
consists of four basic steps: preparation, 
generation, depuration and output. To illustrate 
the operation, a three-bit logic table that 
corresponds to the unidimensional output 
array XT = (0,1,0,1,1,0,0,1) will be used. For the 
first step, the original ‘Gray table’ must be 
generated along with all the possible permuted 
tables and each one of the eight-element 
logic output ‘X’ must be assigned to the 
corresponding input combination. The columns 
from the original ‘Gray table’ are named 
alphabetically using capital letters and used as 
independent arrays, for the example they will 
be: AT = (0,0,0,0,1,1,1,1); BT=(0,0,1,1,1,1,0,0); CT 
= (0,1,1,0,0,1,1,0). The number of permutations 
can be determined using (1) as described by 
Benavides [12], where the interchangeable 
values ‘r’ are the same than the number of bits 
‘n’ so it can be expressed only as the factorial 
of ‘n!’.

(1)

The permuted tables are assembled by 
concatenating the ‘n’ columns in the order given 
by the permutations and reassigning the labels 
of the columns to its original order; each row 
has also assigned its corresponding logic value 
of ‘X’ based on the input bits configuration. 
With the ‘n!’ tables filled, the generation stage 
begins, the objective is to mark the pairs of 
input sets combinations that give a ‘true’ logic 
output. Moreover, is important to keep track 
of the input sets that give a ‘true’ logic output 
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Fig. 2 Assembled permuted tables.

Fig. 3 a) Global combinations and Elusive sets. b) Depurated 
Global combinations and Elusive sets.

Fig. 4 a) Ghost sets depuration. b) Ghosts sets equivalent in 
Karnaugh maps.

but never get in pairs with other combination 
through all the permutations, these sets are 
going to be known as ‘elusive sets’. Fig. 2 shows 
the assembled permuted tables corresponding 
to the example; the dashed lines point out the 
selected input sets, the continuous vertical line 
indicates the corresponding true values and 
the continuous horizontal lines keep track of 
the ‘elusive sets’.

The pairs of input sets selected are reorganized 
in a two-column array called ‘global 
combinations’ while the ‘elusive sets’ occupy 
a namesake unidimensional array, as shown in 
Fig. 3a. In the depuration stage, the repeated 
sets must be deleted regardless of the order 
that the combinations were found (i.e., 011 111 
is the equivalent of 111 011). The result of this 
operation is shown in Fig. 3b.

The output stage is required to translate the 
outcome of the depuration stage into the 
traditional Boolean algebra notation using the 
cleaned 'global combinations' array where the 
unchanged bits are subjected to a logical 'AND' 
whereas each row of the array to a logical 'OR'. 
On the 'elusive sets', the bits of each row are 
subjected to a logical 'AND' while the rows to 

a logical 'OR'. In both arrays, those bits with a 
'false' logical state take the denied label (�), 
and bits with a 'true' logical state take only the 
label of the bit. The first combination changes 
bit 'A' while bits 'B' and 'C' remain the same, so 
the rule for this combination gives the output 
(B·C). In the second row, the bit 'B' changes, the 
bit 'A' remains with '0' and the bit 'C' remains 
with '1' so the logical output is (� A · C). In the 
row from the 'elusive sets', the output is (A · � 
B · � C). The complete output is the logical OR 
of the previous rules: (� A · C) + (B · C) + (A · 
� B ·� C).

In some cases, there are associations involving 
two configurations sets that have already been 
marked; these are called ‘ghost sets’ and most 
commonly appear with four or larger numbers 
of input bits such as XT= (1,1,0,1,1,0,0,1,1,1,0,1,1,0,0,
1) which corresponds to a four-bit function. Fig. 
4a shows the ‘global combinations’ array for 
this logical output after removing the repeated 
sets. To remove the ‘ghosts sets’ is necessary 
to find clusters of logical bits that repeat their 
groupings. In Fig. 4a, the binary combinations 
that are used more than once are marked with 
‘1’.  On the other hand, the first appearance of 
each combination and those that appear only 
once are marker with ‘0’ (β column in Fig. 4a). 
To mark a combination of sets as selected 
at least one of the two sets must be marked 
with a zero. Continuous lines in Fig. 4a note 
the ‘cleaned global combinations’. A clearer 
representation of this can be seen in Fig. 4b, 
where the global combinations are placed in 
the Karnaugh map format. The continuous lines 
indicate the ‘cleaned global combinations’ and 
the shaded sections represent the ‘ghost sets’. 
It is important to note that in order to optimize 
the cleaning of ‘ghosts sets’ it is necessary to 
reorder the table of ‘global combinations’ by 
placing the ‘elusive sets’ (dashed lines) at the 
end of the table, these are represented by pairs 
of identical combinations in Fig 4a. The final 
output will be: (A·�C�D) + (A·C·D) + (�B·�C·D) 
+ (�A·C·D) + (�A·�C·�D).

The importance of placing the ‘elusive sets’ 
at the end of the ‘global combinations’ table 
before executing the last depuration stage is 
to achieve a higher degree of simplification in 
the results, avoiding that the bits are selected 
individually generating functions equally 
equivalent but with more significant extension 
and complexity. To assess the effectiveness of 
the method in the treatment of the ‘ghost sets’, 
more cases with a different number of input 
bits were tested. Besides, unbalance cases with 
logic outputs containing more true outputs (1’s) 
than false outputs (0’s) and conversely, were 
used to make sure that proper simplification is 
accomplished. In these cases, sparse, random 
or uniform location of the true outputs (1’s) was 
also considered.

Two examples corresponding to 3-bit 
combinations are presented to verify the entire 
method and its operation. The first example 
has an input XT= (0,0,0,1,1,0,0,1) and the 
second example is defined by the input XT= 
(1,0,0,1,1,0,0,1). Furthermore, the computational 
effort of the algorithm was analyzed to know 
how efficient the method could be in comparison 
with other fore-mentioned methods. However, 
even when the number of bits of the test cases 
is constant, the location of the true outputs 
(1’s) changes the procedure performed in the 
depuration step and the running time needed. 
Therefore, to have a measurement that can be 
used as a benchmark, the input bit (1,0) was 
used in different computations but increasing 
with the number of bits; e.g. (1,0,1,0,1,0,1,0) for 
3 bits, (1,0,1,0,1,0,1,0,1,0,1,0) for 4 bits, etc. The 
reason to use this logic output combination is 
due to the result in all the cases is the denied 
last variable (� C and � D respectively). With 
only one variable as an answer, the eliminations 
of the repeated combinations in the depuration 
step increase accordingly with the number of 
bits and the running time. Finally, to increase 
the efficiency of the method, a more in-
depth analysis was carried out to find a way 
to qualify the yielded permutations from the 
generation step based on better simplification 
perspectives.

III. RESULTS
A. Example number 1
From the vector XT= (0,0,0,1,1,0,0,1), six existing 
permutations are generated and presented in 
Fig. 5.

Fig. 5 Permutations - example 1.

From each of these permutations the local 
combinations are extracted and grouped in the 
table of ‘global results’ in Fig. 6, it is crucial to 
note the presence in the table of six identical 
rows with the combination [ 1 0 0 - 1 0 0 ] 
indicating a recursive ‘elusive set’.

Fig. 6 Global Results - example 1.

Fig. 7a presents the results of performing 
the purification of repeated combinations on 
the global results, only four of the fourteen 
originals rows remained after the first filtration 
stage. Three of these results will remain in 
the form of ‘elusive sets’, however, at the 
time of performing the procedure described 
previously to eliminate ‘ghost sets’ the last 
two rows are discarded because they present 
redundant combinations that do not provide 
direct information to the solution, this final 
depuration result is presented in Fig. 7b.

C. Troya-Sherdek, V. Salgado-Fuentes, J. Molina and G. Moreno, “Switching Systems Synthesis Method Using
Permuted Gray Code Tables (PGC Method)”, Latin-American Journal of Computing (LAJC), vol. 8, no. 1, 2021.
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Finally, the translation to traditional algebra 
notation is done by analyzing the bits that do 
not change in each row; the first combination 
changes only in the first bit while the second 
one remains constant in all of them, applying 
a logical OR (+) connection between the rows, 
the final Boolean function solution is (B·C) + 
(A·�B·�C).

B.Example number 2
From the vector XT= (1,0,0,1,1,0,0,1), six existing 
permutations are generated and presented 
in Fig. 8. It is interesting to note in these 
permutations that all true outputs (logic 1s) 
can be grouped in one or some of the tables, 
therefore, in the filtered results it will be 
observed that all ‘elusive set’ were eliminated.

Fig. 7 Depurations results - example 1.

Fig. 8 Permutations - example 2.

In Fig. 9 the ‘local results’ were grouped into 
the ‘global results’ array and sorted by placing 
the ‘elusive sets’ at the end (criterion presented 
in Fig 4), those being the last six rows of the 
table before the purification stage.

Fig. 9 Global Results - example 2.

The first filtering step presented in Fig. 10a 
eliminates the repeated combinations between 
rows moving from fourteen combinations 
to only five, of which three remain to be 
‘elusive sets’, then in Fig. 10b the results of 
eliminating ‘ghost sets’ are presented, only 
two final combinations were conserved, and all 
remaining elusive sets were eliminated.

Fig. 10 Depurations results - example 2.

Restructuring the results into the Boolean 
algebra format yields to the function (�B·�C) 
+ (B·C). Both presented examples were 
compared with the Boole-Deusto software, 
and the solutions achieved the same function, 
confirming the operation and effectiveness of 
the methodology.

C. Computational effort & qualification study
Table I compiles the average running time 
of the algorithm, measured for 2, 3, 4, 5, 6 
and 7 bits. As can be seen, the running time 
increases exponentially with the increment of 
inputs bits ‘n’ due to the augment of tables 
(n!). This behaviour can be represented with 
(2) obtained through a regression method. 
With the equation, a simplified expression 
of the computational cost of the algorithm is 
achieved.

Table I  Computational time cost.

(2)

The qualification study yielded multiple truth 
tables sorted using Gray code (permutations), 
each one of them with unique ‘true output’ 
(logic 1’s) clusters as shown with the continuous 
vertical lines in Fig. 11.

Fig. 11 Rating equation applied to 3 permutation tables.

From this clustering, (3) can be developed 
where: ‘m’ represents the number of groups 
found on each table and ‘n’ is the number of 
true values in each group, the result of such 
qualification is exemplified in Fig. 11

(3)

The second permutation has higher 
simplification potential with an alpha value of 
810; it should be noted that, in Fig 11, only 3 of 
the 24 permutations were used.

IV. DISCUSSION
In the case of the method effectiveness, 
some cases were detected where the degree 
of simplification obtained was not fully 
accomplished compared to other methods. 
For instance, in the 4-bit function previously 
presented (Fig. 4a), the solution with the 
proposed method deduced from the ‘global 
combination’ table was: (A·� C·�D) + (A·C·D) 
+ (�B·�C·D) + (�A·C·D) + (�A·�C·�D) while 
the equivalent solution obtained by Boole-
Deusto was: (�C·�D) + (C·D) + (�B·�C). It can 
be deduced that the method yields accurate 
results but not as effective as other methods, 
so an improvement in the depuration stage is 
needed.

Regarding the performance of the method, 
the time used for the programmed algorithm 
to solve the functions is longer than the 
one needed by Boole-Deusto. However, it is 
considered that significant improvements can 
be achieved and these results can be reduced 
considerably by improving steps taken on the 
algorithm, e.g. analyzing only the truth table 
with the best perspectives of simplification as 
explained below. Also, (2) and the results of the 
datasets were compared to well-known growth 
rate models and datasets presented by [13], this 
comparison confirms that the proposed model 
behaviour should be similar to an exponential 
model.

The qualification procedure could allow 
reducing the computational time by discarding 
unnecessary analyzes on inconvenient 
permutations. During the various testing 
stages, a characteristic behaviour has been 
observed in the way in which the ‘local results’ 
are organized in the ‘global results’ array. 
Therefore, it is considered that by applying (3) 
to qualify the permutations would be possible 
to establish a combination order that allows 
a more profound simplification by eliminating 
redundant tables that do not contribute new 
information to the resolution. Nonetheless, the 
improvement of the output stage would be 
covered in further studies.

V. CONCLUSION
This paper proposes the so-called PGC method 
to find a propositional formula of a switching 
system problem by using Gray code principles 
and Boolean algebra. The main advantage of 
the proposed method is that it does not require 
in-depth knowledge of Boolean algebra, and 
unlike graphical methods, the outcome does 
not require visual inspection. Moreover, the 

C. Troya-Sherdek, V. Salgado-Fuentes, J. Molina and G. Moreno, “Switching Systems Synthesis Method Using
Permuted Gray Code Tables (PGC Method)”, Latin-American Journal of Computing (LAJC), vol. 8, no. 1, 2021.



ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2021126 127

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol VIII, Issue 1, January 2021

method is simple to implement and deploy in 
any programming tool since it does not require 
complex development techniques or advanced 
levels of analysis.

The proper operation of the method was 
demonstrated by comparing solutions 
obtained using the implementation described 
with manual methods and Boole-Deusto 
software. Although in some cases, the solution 
obtained did not represent the best possible 
result, an adequate degree of simplification 
was achieved, and all outputs obtained by 
the different methods are correspondingly 
equivalent. Furthermore, an equation that 
correlates the amount of time that the 
algorithm needs to solve a problem based on 
the number of logical inputs helps to estimate 
the computational time of the analyzed system 
before its deployment. Even though the 
computational time of the algorithm might 
be more significant than other methods, a 
possible step of the implementation has been 
identified as the future step of optimization for 
future developments of the PGC method.

Finally, the described method could also be 
extended to solve sequential logic problems, 
decision trees, route optimization, reduction of 
logic circuits or even for the academic purpose 
of using a flat interpretation of Hamiltonian 
hypercubes.
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