
ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2021118 119

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol VIII, Issue 1, January 2021

Síntesis de Sistemas de
Conmutación Mediante

Permutación de
Tablas de Código Gray

(Método PGC)

Switching Systems Synthesis
Method Using Permuted
Gray Code Tables (PGC

Method)
ARTICLE HISTORY

Received 06 August 2020
Accepted 02 November 2020

César Troya-Sherdek
Faculty of Applied Science
International University of Ecuador
Quito, Ecuador
cesartroyasherdek@gmail.com
https://orcid.org/0000-0002-4274-2649

Valentin Salgado-Fuentes
Department of Mechanical Engineering
Technical University of Denmark
Kgs. Lyngby, Denmark
vasafu@mek.dtu.dk

Jaime Molina
Department of Mechanical Science
Kachariy Higher Technical Institute
Quito, Ecuador
jaime.molina@itk.edu.ec

Gustavo Moreno
Department of Electronic Science
Kachariy Higher Technical Institute
Quito, Ecuador
gustavo.moreno@itk.edu.ec

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l V
III

, I
ss

ue
 1

, J
an

ua
ry

 2
0

21

C
. T

ro
ya

-S
he

rd
ek

, V
. S

al
g

ad
o

-F
ue

nt
es

, J
. M

o
lin

a
an

d
 G

. M
o

re
no

, “
Sw

itc
hi

ng
 S

ys
te

m
s

Sy
nt

he
si

s
M

et
ho

d
 U

si
ng

P
er

m
ut

ed
 G

ra
y

C
o

d
e

Ta
b

le
s

(P
G

C
 M

et
ho

d
)”

, L
at

in
-A

m
er

ic
an

 J
o

ur
na

l o
f C

o
m

p
ut

in
g

 (
LA

JC
),

 v
o

l.
8,

 n
o.

 1,
 2

0
21

.

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2021120 121

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol VIII, Issue 1, January 2021

Resumen— Encontrar la función más corta
en los sistemas de conmutación es una
necesidad para el desarrollo de sistemas
automáticos eficientes. Actualmente, existen
varias metodologías que tienen como objetivo
solucionar esta necesidad con diferentes
técnicas. Este artículo propone una nueva
metodología para encontrar una fórmula
proposicional que describa un problema
de un sistema de conmutación utilizando
varias tablas de verdad que se basan en una
original, estas tablas se generan utilizando
los principios y permutaciones del Código
Gray. Como se mostrará, el código utilizado
tiene una relación directa con los caminos
hamiltonianos, donde cada permutación es una
conexión diferente en un hipervolumen y cada
nodo se representa como una combinación
de bits. Para verificar y validar el método, se
desarrolló un algoritmo utilizando el MATLAB
y se comparó con las soluciones del software
Boole-Deusto. Finalmente, se presentan
ejemplos de ejecución, comparación de costos
computacionales y propuestas de trabajos
futuros.

Palabras Clave— Caminos hamiltonianos,
código Gray, funciones booleanas, hipercubo,
problemas discretos, sistemas de conmutación

Abstract— Finding the shortest function
on switching systems is a necessity for the
development of efficient automatic systems.
Currently, several methodologies aim to

César Troya-Sherdek
Faculty of Applied Science
International University of

Ecuador
Quito, Ecuador

cesartroyasherdek@gmail.com

Gustavo Moreno
Department of Electronic

Science
Kachariy Higher Technical

Institute
Quito, Ecuador

gustavo.moreno@itk.edu.ec

Valentin Salgado-Fuentes
Department of Mechanical

Engineering
Technical University of

Denmark
Kgs. Lyngby, Denmark

vasafu@mek.dtu.dk

Jaime Molina
Department of Mechanical

Science
Kachariy Higher Technical

Institute
Quito, Ecuador

jaime.molina@itk.edu.ec

Síntesis de Sistemas de Conmutación Mediante Permutación de Tablas de
Código Gray (Método PGC)

Switching Systems Synthesis Method Using Permuted Gray Code Tables
(PGC Method)

Fig. 1 Multidimensional representation of a Gray code table
permutation.

C. Troya-Sherdek, V. Salgado-Fuentes, J. Molina and G. Moreno, “Switching Systems Synthesis Method Using
Permuted Gray Code Tables (PGC Method)”, Latin-American Journal of Computing (LAJC), vol. 8, no. 1, 2021.

solve this need with different techniques.
This article proposes a new methodology to
find a propositional formula that describes a
switching system problem using several truth
tables which are based on an original one; these
tables are generated using Gray Code principles
and permutations. As it will be shown, the used
code has a direct relation to the Hamiltonian
paths, where each permutation is a different
connection in a hypervolume, and each node is
represented as a bit combination. An algorithm
was developed using MATLAB and compared
with the solutions from the software Boole-
Deusto to verify and validate the applicability
and implementation of the method. Finally,
examples of execution, computational cost
comparison and future work proposals are
presented.

Keywords— Boolean functions, discrete
problems, Gray Code, Hamiltonian Paths,
hypercube, switching systems.

I. INTRODUCTION
The solution of switching systems problems is
of increasing importance in the development
of modern technologies as well as in the
implementation of automated control
strategies. Thus, some authors like P. Roth [1],
Quine [2] or Karnaugh [3] made much effort
to improve the efficiency of these solutions.
In propositional logic, a truth table defines
a problem and a propositional formula (also

known as truth function or Boolean function),
can be obtained to describe any given truth
table. Several methods can be used to obtain
this formula, e.g. Veitch chart, Karnaugh
map [4], minterms, maxterms [5] or Boolean
algebra. However, as recognized by Quine [2],
“The quest is to descry a technique to find the
shortest truth-function formula” or by Veitch
[6] “The problem is how to depict a Boolean
function of “n” variables so the human eye
can quickly see how to simplify the function”.
Veitch and Karnaugh used graphical methods,
but higher-order problems present severe
difficulties since the method involves human
inspection.

This work proposes a new method to find a
propositional formula that describes a switching
system problem. Based on the original truth
table, Gray code principles and permutations
[7] are used to generate multiple truth tables.
Gray codes are named after Frank Gray who in
1947 patented the idea of generating a binary
codification that is used in applications that
depends essentially on the bits looping. They
are represented as a function G(i) where the
consequential G(i+1) differ in exactly one bit
[8], it is essential to note that the permuted
tables that start with Gray code structure will
maintain that property in all permutations. The
advantage of using Gray codes to rearrange the
truth tables, as will be explained in the method,
lies on generating clusters that can be grouped
and simplified using Boolean algebra theorems
like identities and complements.

To verify and validate the proposed method, an
algorithm using MATLAB 2014b is developed
and tested with 2 to 7 bits logic tables. The
computations are performed on a 64-bit
architecture Intel XEON E3-1505M 2.80 GHz
with 32 Gb RAM personal workstation capable
of achieving a propositional formula that
adequately solves the original switching system
truth table. The solutions from the current
method are compared with the solutions from
the software Boole-Deusto [9].

II. METHOD
The Gray code tables present a single bit
variation in each row, allowing to identify
groups (2n members) of bits with a ‘true’ logic
output that can be simplified. By permuting the
columns of the Gray table, all possible clusters
appear. The approach used has a direct relation
with the Hamiltonian paths in hypercubes [10]
where each permutation is a different path, and
each node (vertex) is represented as a row (bit
combination) of the truth table as can be seen
in Fig. 1 [11]; transforming a multidimensional
analysis into a unidimensional one. The right

side of Fig. 1 shows a hypercube, whose
vertices represent all possible combinations of
the permutation. The vertices with a filled circle
are the returned true outputs, and the vertices
with the empty circle are the false outputs.
Also, the arrows show the Hamiltonian path for
the given Gray code truth table permutations
that are represented in the left side of Fig. 1.

The algorithm of the proposed method
consists of four basic steps: preparation,
generation, depuration and output. To illustrate
the operation, a three-bit logic table that
corresponds to the unidimensional output
array XT = (0,1,0,1,1,0,0,1) will be used. For the
first step, the original ‘Gray table’ must be
generated along with all the possible permuted
tables and each one of the eight-element
logic output ‘X’ must be assigned to the
corresponding input combination. The columns
from the original ‘Gray table’ are named
alphabetically using capital letters and used as
independent arrays, for the example they will
be: AT = (0,0,0,0,1,1,1,1); BT=(0,0,1,1,1,1,0,0); CT
= (0,1,1,0,0,1,1,0). The number of permutations
can be determined using (1) as described by
Benavides [12], where the interchangeable
values ‘r’ are the same than the number of bits
‘n’ so it can be expressed only as the factorial
of ‘n!’.

(1)

The permuted tables are assembled by
concatenating the ‘n’ columns in the order given
by the permutations and reassigning the labels
of the columns to its original order; each row
has also assigned its corresponding logic value
of ‘X’ based on the input bits configuration.
With the ‘n!’ tables filled, the generation stage
begins, the objective is to mark the pairs of
input sets combinations that give a ‘true’ logic
output. Moreover, is important to keep track
of the input sets that give a ‘true’ logic output

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2021122 123

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol VIII, Issue 1, January 2021

Fig. 2 Assembled permuted tables.

Fig. 3 a) Global combinations and Elusive sets. b) Depurated
Global combinations and Elusive sets.

Fig. 4 a) Ghost sets depuration. b) Ghosts sets equivalent in
Karnaugh maps.

but never get in pairs with other combination
through all the permutations, these sets are
going to be known as ‘elusive sets’. Fig. 2 shows
the assembled permuted tables corresponding
to the example; the dashed lines point out the
selected input sets, the continuous vertical line
indicates the corresponding true values and
the continuous horizontal lines keep track of
the ‘elusive sets’.

The pairs of input sets selected are reorganized
in a two-column array called ‘global
combinations’ while the ‘elusive sets’ occupy
a namesake unidimensional array, as shown in
Fig. 3a. In the depuration stage, the repeated
sets must be deleted regardless of the order
that the combinations were found (i.e., 011 111
is the equivalent of 111 011). The result of this
operation is shown in Fig. 3b.

The output stage is required to translate the
outcome of the depuration stage into the
traditional Boolean algebra notation using the
cleaned 'global combinations' array where the
unchanged bits are subjected to a logical 'AND'
whereas each row of the array to a logical 'OR'.
On the 'elusive sets', the bits of each row are
subjected to a logical 'AND' while the rows to

a logical 'OR'. In both arrays, those bits with a
'false' logical state take the denied label (�),
and bits with a 'true' logical state take only the
label of the bit. The first combination changes
bit 'A' while bits 'B' and 'C' remain the same, so
the rule for this combination gives the output
(B·C). In the second row, the bit 'B' changes, the
bit 'A' remains with '0' and the bit 'C' remains
with '1' so the logical output is (� A · C). In the
row from the 'elusive sets', the output is (A · �
B · � C). The complete output is the logical OR
of the previous rules: (� A · C) + (B · C) + (A ·
� B ·� C).

In some cases, there are associations involving
two configurations sets that have already been
marked; these are called ‘ghost sets’ and most
commonly appear with four or larger numbers
of input bits such as XT= (1,1,0,1,1,0,0,1,1,1,0,1,1,0,0,
1) which corresponds to a four-bit function. Fig.
4a shows the ‘global combinations’ array for
this logical output after removing the repeated
sets. To remove the ‘ghosts sets’ is necessary
to find clusters of logical bits that repeat their
groupings. In Fig. 4a, the binary combinations
that are used more than once are marked with
‘1’. On the other hand, the first appearance of
each combination and those that appear only
once are marker with ‘0’ (β column in Fig. 4a).
To mark a combination of sets as selected
at least one of the two sets must be marked
with a zero. Continuous lines in Fig. 4a note
the ‘cleaned global combinations’. A clearer
representation of this can be seen in Fig. 4b,
where the global combinations are placed in
the Karnaugh map format. The continuous lines
indicate the ‘cleaned global combinations’ and
the shaded sections represent the ‘ghost sets’.
It is important to note that in order to optimize
the cleaning of ‘ghosts sets’ it is necessary to
reorder the table of ‘global combinations’ by
placing the ‘elusive sets’ (dashed lines) at the
end of the table, these are represented by pairs
of identical combinations in Fig 4a. The final
output will be: (A·�C�D) + (A·C·D) + (�B·�C·D)
+ (�A·C·D) + (�A·�C·�D).

The importance of placing the ‘elusive sets’
at the end of the ‘global combinations’ table
before executing the last depuration stage is
to achieve a higher degree of simplification in
the results, avoiding that the bits are selected
individually generating functions equally
equivalent but with more significant extension
and complexity. To assess the effectiveness of
the method in the treatment of the ‘ghost sets’,
more cases with a different number of input
bits were tested. Besides, unbalance cases with
logic outputs containing more true outputs (1’s)
than false outputs (0’s) and conversely, were
used to make sure that proper simplification is
accomplished. In these cases, sparse, random
or uniform location of the true outputs (1’s) was
also considered.

Two examples corresponding to 3-bit
combinations are presented to verify the entire
method and its operation. The first example
has an input XT= (0,0,0,1,1,0,0,1) and the
second example is defined by the input XT=
(1,0,0,1,1,0,0,1). Furthermore, the computational
effort of the algorithm was analyzed to know
how efficient the method could be in comparison
with other fore-mentioned methods. However,
even when the number of bits of the test cases
is constant, the location of the true outputs
(1’s) changes the procedure performed in the
depuration step and the running time needed.
Therefore, to have a measurement that can be
used as a benchmark, the input bit (1,0) was
used in different computations but increasing
with the number of bits; e.g. (1,0,1,0,1,0,1,0) for
3 bits, (1,0,1,0,1,0,1,0,1,0,1,0) for 4 bits, etc. The
reason to use this logic output combination is
due to the result in all the cases is the denied
last variable (� C and � D respectively). With
only one variable as an answer, the eliminations
of the repeated combinations in the depuration
step increase accordingly with the number of
bits and the running time. Finally, to increase
the efficiency of the method, a more in-
depth analysis was carried out to find a way
to qualify the yielded permutations from the
generation step based on better simplification
perspectives.

III. RESULTS
A. Example number 1
From the vector XT= (0,0,0,1,1,0,0,1), six existing
permutations are generated and presented in
Fig. 5.

Fig. 5 Permutations - example 1.

From each of these permutations the local
combinations are extracted and grouped in the
table of ‘global results’ in Fig. 6, it is crucial to
note the presence in the table of six identical
rows with the combination [1 0 0 - 1 0 0]
indicating a recursive ‘elusive set’.

Fig. 6 Global Results - example 1.

Fig. 7a presents the results of performing
the purification of repeated combinations on
the global results, only four of the fourteen
originals rows remained after the first filtration
stage. Three of these results will remain in
the form of ‘elusive sets’, however, at the
time of performing the procedure described
previously to eliminate ‘ghost sets’ the last
two rows are discarded because they present
redundant combinations that do not provide
direct information to the solution, this final
depuration result is presented in Fig. 7b.

C. Troya-Sherdek, V. Salgado-Fuentes, J. Molina and G. Moreno, “Switching Systems Synthesis Method Using
Permuted Gray Code Tables (PGC Method)”, Latin-American Journal of Computing (LAJC), vol. 8, no. 1, 2021.

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2021124 125

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol VIII, Issue 1, January 2021

Finally, the translation to traditional algebra
notation is done by analyzing the bits that do
not change in each row; the first combination
changes only in the first bit while the second
one remains constant in all of them, applying
a logical OR (+) connection between the rows,
the final Boolean function solution is (B·C) +
(A·�B·�C).

B.Example number 2
From the vector XT= (1,0,0,1,1,0,0,1), six existing
permutations are generated and presented
in Fig. 8. It is interesting to note in these
permutations that all true outputs (logic 1s)
can be grouped in one or some of the tables,
therefore, in the filtered results it will be
observed that all ‘elusive set’ were eliminated.

Fig. 7 Depurations results - example 1.

Fig. 8 Permutations - example 2.

In Fig. 9 the ‘local results’ were grouped into
the ‘global results’ array and sorted by placing
the ‘elusive sets’ at the end (criterion presented
in Fig 4), those being the last six rows of the
table before the purification stage.

Fig. 9 Global Results - example 2.

The first filtering step presented in Fig. 10a
eliminates the repeated combinations between
rows moving from fourteen combinations
to only five, of which three remain to be
‘elusive sets’, then in Fig. 10b the results of
eliminating ‘ghost sets’ are presented, only
two final combinations were conserved, and all
remaining elusive sets were eliminated.

Fig. 10 Depurations results - example 2.

Restructuring the results into the Boolean
algebra format yields to the function (�B·�C)
+ (B·C). Both presented examples were
compared with the Boole-Deusto software,
and the solutions achieved the same function,
confirming the operation and effectiveness of
the methodology.

C. Computational effort & qualification study
Table I compiles the average running time
of the algorithm, measured for 2, 3, 4, 5, 6
and 7 bits. As can be seen, the running time
increases exponentially with the increment of
inputs bits ‘n’ due to the augment of tables
(n!). This behaviour can be represented with
(2) obtained through a regression method.
With the equation, a simplified expression
of the computational cost of the algorithm is
achieved.

Table I Computational time cost.

(2)

The qualification study yielded multiple truth
tables sorted using Gray code (permutations),
each one of them with unique ‘true output’
(logic 1’s) clusters as shown with the continuous
vertical lines in Fig. 11.

Fig. 11 Rating equation applied to 3 permutation tables.

From this clustering, (3) can be developed
where: ‘m’ represents the number of groups
found on each table and ‘n’ is the number of
true values in each group, the result of such
qualification is exemplified in Fig. 11

(3)

The second permutation has higher
simplification potential with an alpha value of
810; it should be noted that, in Fig 11, only 3 of
the 24 permutations were used.

IV. DISCUSSION
In the case of the method effectiveness,
some cases were detected where the degree
of simplification obtained was not fully
accomplished compared to other methods.
For instance, in the 4-bit function previously
presented (Fig. 4a), the solution with the
proposed method deduced from the ‘global
combination’ table was: (A·� C·�D) + (A·C·D)
+ (�B·�C·D) + (�A·C·D) + (�A·�C·�D) while
the equivalent solution obtained by Boole-
Deusto was: (�C·�D) + (C·D) + (�B·�C). It can
be deduced that the method yields accurate
results but not as effective as other methods,
so an improvement in the depuration stage is
needed.

Regarding the performance of the method,
the time used for the programmed algorithm
to solve the functions is longer than the
one needed by Boole-Deusto. However, it is
considered that significant improvements can
be achieved and these results can be reduced
considerably by improving steps taken on the
algorithm, e.g. analyzing only the truth table
with the best perspectives of simplification as
explained below. Also, (2) and the results of the
datasets were compared to well-known growth
rate models and datasets presented by [13], this
comparison confirms that the proposed model
behaviour should be similar to an exponential
model.

The qualification procedure could allow
reducing the computational time by discarding
unnecessary analyzes on inconvenient
permutations. During the various testing
stages, a characteristic behaviour has been
observed in the way in which the ‘local results’
are organized in the ‘global results’ array.
Therefore, it is considered that by applying (3)
to qualify the permutations would be possible
to establish a combination order that allows
a more profound simplification by eliminating
redundant tables that do not contribute new
information to the resolution. Nonetheless, the
improvement of the output stage would be
covered in further studies.

V. CONCLUSION
This paper proposes the so-called PGC method
to find a propositional formula of a switching
system problem by using Gray code principles
and Boolean algebra. The main advantage of
the proposed method is that it does not require
in-depth knowledge of Boolean algebra, and
unlike graphical methods, the outcome does
not require visual inspection. Moreover, the

C. Troya-Sherdek, V. Salgado-Fuentes, J. Molina and G. Moreno, “Switching Systems Synthesis Method Using
Permuted Gray Code Tables (PGC Method)”, Latin-American Journal of Computing (LAJC), vol. 8, no. 1, 2021.

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2021126 127

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol VIII, Issue 1, January 2021

method is simple to implement and deploy in
any programming tool since it does not require
complex development techniques or advanced
levels of analysis.

The proper operation of the method was
demonstrated by comparing solutions
obtained using the implementation described
with manual methods and Boole-Deusto
software. Although in some cases, the solution
obtained did not represent the best possible
result, an adequate degree of simplification
was achieved, and all outputs obtained by
the different methods are correspondingly
equivalent. Furthermore, an equation that
correlates the amount of time that the
algorithm needs to solve a problem based on
the number of logical inputs helps to estimate
the computational time of the analyzed system
before its deployment. Even though the
computational time of the algorithm might
be more significant than other methods, a
possible step of the implementation has been
identified as the future step of optimization for
future developments of the PGC method.

Finally, the described method could also be
extended to solve sequential logic problems,
decision trees, route optimization, reduction of
logic circuits or even for the academic purpose
of using a flat interpretation of Hamiltonian
hypercubes.

ACKNOWLEDGEMENTS
The authors gratefully acknowledge the
support of M.Sc. Richard Andrade and M.Sc.
Jose Beltran for their useful and valuable
advice and mentorship. Their comments and
suggestions during the performance of the
project have helped the team to direct the
focus of the analysis in the right track.

REFERENCES

J. P. Roth, "Algebraic topological
methods for the synthesis of switching
systems. I.," Transactions of the American
Mathematical Society 88.2, pp. 301-326,
1958.
W.V. Quine "A way to simplify truth
functions." The American mathematical
monthly 62.9, pp. 627-631, 1955.
M. Karnaugh, "The map method for
synthesis of combinational logic
circuits," Transactions of the American
Institute of Electrical Engineers, Part I:
Communication and Electronics 72.5,
pp. 593-599, 1963.

R.B Hurley, "Probability maps," IEEE
Transactions on Reliability 12.3 pp. 39-
44, 1963.
Astola, Jaakko, and R. Stankovic.
“Fundamentals of Switching Theory and
Logic Design A Hands-on Approach,”
Springer, 2006.
E.W. Veitch, "A chart method for
simplifying truth functions," Proceedings
of the ACM national meeting (Pittsburgh),
1952.
Bitner, R James., Gideon Ehrlich, and
E.M. Reingold. "Efficient generation of
the binary reflected Gray code and its
applications," Communications of the
ACM 19.9, pp. 517-521, 1976.
W. Press, et al. Numerical recipes in
Fortran 77: volume 1, volume 1 of Fortran
numerical recipes: the art of scientific
computing. Cambridge university press.
1992.
J. Zubia, J. García, Sanz Martínez, and S.
Borja, "BOOLE-DEUSTO, la aplicación
para sistemas digitales," 2001.
J. Dybizbanski, and A. Szepietowski,
"Hamiltonian paths in hypercubes with
local traps," Information Sciences 375,
pp. 258-270, 2007.
K. Sankar, V. Jaya, M. Pandharipande,
and P. S. Moharir. "Generalized
gray codes," Proceedings of 2004
International Symposium on Intelligent
Signal Processing and Communication
Systems, ISPACS IEEE. 2004.
D. Benavides, “Diseño, implementación
y evaluación de unidades didácticas de
matemáticas en MAD 2,” pp. 265. 2019.
[13] L. Egghe and I. Ravichandra Rao,
"Classification of growth models based
on growth rates and its applications,"
Scientometrics 25.1, pp. 5-46, 1992.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

C. Troya-Sherdek, V. Salgado-Fuentes, J. Molina and G. Moreno, “Switching Systems Synthesis Method Using
Permuted Gray Code Tables (PGC Method)”, Latin-American Journal of Computing (LAJC), vol. 8, no. 1, 2021.

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2021128 129

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol VIII, Issue 1, January 2021

AUTHORS

Jaime Vinicio Molina Osejos, Professor at SEK International
University Auxiliary Investigator by the Senescyt, Master in
Design, Production and Industrial Automation. Leader of the
Laboratory of Metallography and Industrial, Coordinator of
the Master's Degree in Mechanical Design, Manufacturing of
Vehicle Autoparts (2016 - 2018). Coordinator of the Careers
of Mechanical Engineering in: Design and Materials (2012
- 2014), Member of the Research Committee of the UISEK
(2011) Professor since 2010 of in SEK International University.
and Kachariy Higher Technological Institute

Gustavo Adolfo Moreno Jimenez is Professor at ITK Instituto
Tecnologico Kachary director of Electronics area. He
received his Master of Science in Technology Management
from Marshall University (United States), his Master in
Pedagogy and University Management from SEK University
(Chile), and his Bachelor in Science at Electronic Engineering
from ESPE University (Ecuador). He is a Senescyt certified
Investigator, winner of “Ideas Bank” Senescyt Award in 2015,
and winner of “Teaching Best Practices” SEK University
Award in 2017.

César David Troya Sherdek, Marketing / Sales operations
/ Business Intelligence Analyst in General Motors Ecuador,
Associate professor at ITK Instituto Tecnológico Kachary
for the electronics department, Cum Laude in Mechatronic
Engineering from the International University of Ecuador,
MBAc from ADEN University, has worked in research
groups in the aeronautics area, aerospace, mathematics
and computing, also lectured on data science and artificial
intelligence.

Valentin Salgado Fuentes- Born in Quito - Ecuador in
1991 and Graduated from the SEK International University
of Ecuador in 2014 as a Mechanical Engineer with a
specialization in Energy and Control processes. In 2016 he
moved to Denmark to study a Master degree in Engineering
Design and Applied Mechanics at the Technical University
of Denmark (DTU). Since 2018, he is a PhD student at the
Section of Thermal Energy at DTU developing advance
numerical models of complex thermal systems.

César Troya-Sherdek Jaime Molina

Valentin Salgado-Fuentes Gustavo Moreno

C
. T

ro
ya

-S
he

rd
ek

, V
. S

al
g

ad
o

-F
ue

nt
es

, J
. M

o
lin

a
an

d
 G

. M
o

re
no

, “
Sw

itc
hi

ng
 S

ys
te

m
s

Sy
nt

he
si

s
M

et
ho

d
 U

si
ng

P
er

m
ut

ed
 G

ra
y

C
o

d
e

Ta
b

le
s

(P
G

C
 M

et
ho

d
)”

, L
at

in
-A

m
er

ic
an

 J
o

ur
na

l o
f C

o
m

p
ut

in
g

 (
LA

JC
),

 v
o

l.
8,

 n
o.

 1,
 2

0
21

.

