Síntesis de Sistemas de Conmutación Mediante

Permutación de Tablas de Código Gray
(Método PGC)

Switching Systems Synthesis
Method Using Permuted Gray Code Tables (PGC

Method)

Síntesis de Sistemas de Conmutación Mediante Permutación de Tablas de

 Código Gray (Método PGC)Switching Systems Synthesis Method Using Permuted Gray Code Tables (PGC Method)

Cesar Troya-Sherdek
Faculty of Applied Science International University of
Ecuador
Quito, Ecuador
esartroyasherdek@gmail.com
\section*{Jaime Molina}
> Department of Mechanical Science Kachariy Higher Technical Institute Kito
jaime molina@itk.edu.

Valentin Salgado-Fuentes
epartment of Mechanical Engineering
Technical University of Denmark
gs. Lyngby, Denmar
\section*{Gustavo Moreno}
Department of Electron
Science
Kachariy Higher Technical
Quito, Ecuad

gustavo.moreno@itk.edu.ec

Resumen- Encontrar la función más corta en los sistemas de conmutación es una necesidad para el desarrollo de sistemas varias metodologías que tienen como objetiv varias metodologias que tienen como objetivo
solucionar esta necesidad con diferentes unicas esta necesidad con diferentes metoct arte prope una fórmu proposicional que describa un problem de un sistema de conmutación utilizando varias tablas de verdad que se basan en una original, estas tablas se generan utilizand os principios y permutaciones del Codigo Gray. Como se mostrará, el código utilizado tiene una relación directa con los caminos hamiltonianos, donde cada permutación es una hodo se representa como una combinació de bits. Para verificar y validar el método, se desarrolló un algoritmo utilizando el MATLAB y se comparo con las soluciones del software Boole-Deusto. Finalmente, se presentan ejemplos de ejecución, comparación de costos computacionales y propuestas de trabajo futuros.

Palabras Clave- Caminos hamiltonianos, Palabras Clave- Caminos hamiltonianos, problemas discretos, sistemas de conmutación

Abstract- Finding the shortest function on switching systems is a necessity for th development of efficient automatic systems. Currently, several methodologies aim to
solve this need with different techniques This article proposes a new methodology to ind a propositional formula that describes when system problem using several truth ables which are based on an original one; these and permutations As it will Gray Code principles ode has a direct relation to the Hamiltonia paths, where each permutation is a differen connection in a hypervolume, and each node is represented as a bit combination. An algorithm was developed using MATLAB and compared with the solutions from the software Boole Deusto to verify and validate the applicability and implementation of the method. Finally xamples of execution, computational cost presented

Keywords- Boolean functions, discrete problems, Gray Code, Hamiltonian Paths, hypercube, switching systems.

I. INTRODUCTION

The solution of switching systems problems is of increasing importance in the developmen of modern technologies as well as in the mplementation of automated control Quine [2] or Karnaugh [3] made much effort O improve the efficiency made much effor In propositional logic, a truth table define a problem and a propositional formula (als
nown as truth function or Boolean function) can be obtained to describe any given truth able. Several methods can be used to obtai his formula, e.g. Veitch chart, Karnaugh ap [4], minterms, maxterms [5] or Boolea The quest is to descry a technique to find the
 6] "The problem is how to depict a Boolean unction of " n " variables so the human eye can quickly see how to simplify the function eitch and Karnaugh used graphical methods, but higher-order problems present severe ifficulties since the method involves human inspection.

This work proposes a new method to find a propositional formula that describes a switchin ystem problem. Based on the original truth table, Gray code principles and permutation [7] are used to generate multiple truth tables. Gray codes are named after Frank Gray who in 1947 patented the idea of generating a binary epends essentially un the bits lications The are represented as a function $\mathrm{G}(\mathrm{i})$ where the onsequential $\mathrm{G}(\mathrm{i}+1)$ differ in exactly one bit 8], it is essential to note that the permuted tables that start with Gray code structure wi aintain that property in all permutations. The advantage of using Gray codes to rearrange the truth tables, as will be explained in the method and ke identities and complements.
o verify and validate the proposed method, an lgorithm using MATLAB 2014b is develope and tested with 2 to 7 bits logic tables. The omputations are performed a 64 -bit rchitecture Intel XEON E3-1505M 2.80 GHz with 32 Gb RAM personal workstation capable dequately solves the original switching system truth table. The solutions from the curren method are compared with the solutions from he software Boole-Deusto [9]

I. METHOD

The Gray code tables present a single bit variation in each row, allowing to identify roups (2 n members) of bits with a 'true' logic
 ppear. The approach used has a direct relatio with the Hamiltonian paths in hypercubes [10] where each permutation is a different path, and ach node (vertex) is represented as a row (bit in Fig. 1 [11]: transforming a multidimensiona nalysis into a unidimensional one. The right
ide of Fig. 1 shows a hypercube, whose vertices represent all possible combinations of the permutation. The vertices with a filled circle re the returned true outputs, and the vertice with the empty circle are the false outputs Also, the arrows show the Hame nermutation hat are represented in the left side of Fig. 1.

Fig. 1 Multioni
permutation.
The algorithm of the proposed method consists of four basic steps: preparation generation, depuration and output. To illustrat he operation, a three-bit logic table tha array $\mathrm{XT}=(0,1,0,1,1,0,0,1)$ will be used. For the first step, the original 'Gray table' must b generated along with all the possible permuted ables and each one of the eight-elemen logic output ' X ' must be assigned to th corresponding input combination. The columns from the original 'Gray table' are named phabetically using capital letters and used a be: $\mathrm{AT}=(0,00011111)$: $\mathrm{BT}=(0,01111,00)$. ($0,1,1,0,0,1,1,0$). The number of permutation can be determined using (1) as described by Benavides [12], where the interchangeabl values ' r ' are the same than the number of bits ' n ' so it can be expressed only as the factorial of ' n

$$
\begin{equation*}
\text { NTables }=\frac{n!}{(n-r)!} \tag{1}
\end{equation*}
$$

The permuted tables are assembled by oncatenating the ' n ' columns in the order give by the permutations and reassigning the labels has also assigned its corresponding logic value f ' X ' based on the input bits configuration With the ' n !' tables filled, the generation stage begins, the objective is to mark the pairs of nput sets combinations that give a 'true' logic output. Moreover, is important to keep trac of the input sets that give a 'true' logic output
but never get in pairs with other combination through all the permutations, these sets are going to be known as 'elusive sets'. Fig. 2 shows the assembled permuted tables corresponding to the example; the dashed lines point out the selected input sets, the continuous vertical line he continuous horizontal lines keep track of the 'elusive sets'.

1°	2°	3°
Permutation	permutation	permutation
A B clx	А b clx	A b clx
0000	0 0 0\|0	0 0 0] ${ }^{\circ}$
0 011	$100{ }^{1} 1$	01 0\|0
010	$1{ }^{1} 0$	010
91.90	5-919	$\left(\begin{array}{llll}1 & 0 & 011\end{array}\right.$
: 1	5-19	1.0110
1..1...:11	1.. 1.11	1-119
$1{ }^{1}$	11	b-19
0 1\|1	0180	D-0. 111
4°	5°	6°
Permutation	permutation	Permutation
B c\|x	А в ${ }^{\text {c\|x }}$	А в clx
0 00	-0.0.0	0 - 0 0
$00^{0} 111$	- ${ }^{1}$	-1-010
1 - 110	日. $1 . .11$	$0_{0}^{0} 1111$
$\begin{array}{llll}1 & 0 & 011\end{array}$	$\bigcirc 180$	- 0 - 1 \|1
1.100	11 010	0110
: 1 -	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 111 \\ 1 & 1\end{array}$
!0-1-3:1	10 110 100	1 1 010 1 0 1
1 ө\|o	1 0	(108) 011

ig. 2 Assembled permuted tables.
The pairs of input sets selected are reorganized in a two-column array called 'globa combinations' while the 'elusive sets' occupy Fig. 3a. In the depuration stage the repeated sets must be deleted regardless of the order that the combinations were found (i.e., O11 111 is the equivalent of 111011). The result of this operation is shown in Fig. 3b.


```
\(\begin{array}{llllll}0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1\end{array}\)
```


	Elusive sets	
A	B	C
1	0	0

Fig. 3 a) Global combinations and Elusive sets. b) Depurated
G/obal combinations and Elusive sets .
The output stage is required to translate the outcome of the depuration stage into the cleaned 'global combinations' array where the unchanged bits are subjected to a logical 'AND' whereas each row of the array to a logical 'OR' On the 'elusive sets', the bits of each row are subjected to a logical 'AND' while the rows to
a logical 'OR. In both arrays, those bits with 'false' logical state take the denied label (\sim) and bits with a 'true' logical state take only the label of the bit. The first combination changes bit ' A ' while bits ' B ' and ' C ' remain the same, so (B.C). In the second row, the bit ' B^{\prime} ' bit ' A ' remains with ' O ' and the bit ' C ' remain with '11' so the logical output is (~ A . C). In the row from the 'elusive sets', the output is (A . $\mathrm{B} \cdot \sim \mathrm{C}$). The complete output is the logical OR of the previous rules: $(\sim A \cdot C)+(B \cdot C)+(A$ B $\sim C$)
in some cases, there are associations involving wo configurations sets that have already been commonly appear with four or larger numbers of input bits such as $\mathrm{XT}=(1,1,0,1,1,0,0,1,1,1,0,1,1,0,0$,) which corresponds to a four-bit function. Fig a a shows the 'global combinations array for this logical output after removing the repeated sets. To remove the 'ghosts sets' is necessary orind clusters of logical bits that repeat their that are used more than once are marked with 1'. On the other hand, the first appearance of each combination and those that appear only once are marker with ' 0 ' (β column in Fig. 4a) To mark a combination of sets as selected at least one of the two sets must be marked with a zero. Continuous lines in Fig. 4a note he cleaned global combinations. A cleare where the global combinations are placed in the Karnaugh map format. The continuous lines indicate the 'cleaned global combinations' and the shaded sections represent the 'ghost sets'. It is important to note that in order to optimize the cleaning of 'ghosts sets' it is necessary to reorder the table of 'global combinations' by placing the 'elusive sets' (dashed lines) at the of identical combinations in Fig 4a. The fina output will be: (A•~C~D) + (A.C.D) + (~B. $\sim C \cdot D)$ $+(\sim A \cdot C \cdot D)+(\sim A \cdot \sim C \cdot \sim D)$.

The importance of placing the 'elusive sets' at the end of the 'global combinations' table ochieve a higher degree of simplification in the results, avoiding that the bits are selected individually generating functions equally quivalent but with more significant extensio and complexity. To assess the effectiveness o the method in the treatment of the 'ghost sets' more cases with a different number of inpu bits were tested. Besides, unbalance cases with han false outputs (O's) and conversely, were used to make sure that proper simplification is accomplished. In these cases, sparse, random or uniform location of the true outputs (1's) was also considered.

Two examples corresponding to 3 -bit combinations are presented to verify the entire has an input $\times T=(0,0,0,1,0,0,1)$ and the second example is defined by the input $\mathrm{XT}=$ (1,0,0,1,1,0,0,1). Furthermore, the computationa ffort of the algorithm was analyzed to know owefficient themethod could be in comparison with other fore-mentioned methods. However ven when the number of bits of the test case (1 's) changes the procedure performed in the depuration step and the running time needed. Therefore, to have a measurement that can be used as a benchmark, the input bit (1,0) was used in different computations but increasing with the number of bits, e.g. ($1,0,1,0,1,0,1,0$) fo bits, ($1,0,1,0,1,0,1,,,, 0,1,0$) for 4 bits, etc. The eason to use this logic output combination is ast variable (\sim C and $\sim D$ respectively). With only one variable as an answer the elimination of the repeated combinations in the depuration step increase accordingly with the number o bits and the running time. Finally, to increase the efficiency of the method, a more in depth analysis was carried out to find a way qualify the yielced pen better simplification perspectives.

III. RESULTS

A. Example number
 Fig. 5

0	010	0	0	010		0		0	0	
1	00^{1}	1	0	$0 \mid 1$	0	1	${ }_{0} 0_{0}$	0	0	
1	1 0\|0	1	0	$1 \mid 0$	1	1	010	1	0	$1 \mid 0$
0	1 0\|0	0	0	$1{ }^{1} 0$		0	0\|1	1	0	
0	1 1\|1	0	1	1\|1	1	0	$1{ }^{1}$	1	1	
1	$1{ }^{1 / 1}$	1	1	$1{ }^{1} 1$		1	${ }_{1 / 1}$	1	1	
1	0 1\|0	1	1	010	0	1	${ }^{1 / 1}$	0	1	
0	0 1\|0	0	1	010		0		0	1	
(a) $1^{\text {t }}$		(b) $2^{\text {nd }}$			(c) $3^{\text {rd }}$			(d) $3^{\text {rd }}$		
			0	- 10		0				
			0	(10		0	1 0\|0			
			0	$1{ }^{1 \mid 1}$		0	$1{ }^{1 \mid 1}$			
			0	$10 \mid 0$		0	$0{ }^{1 \mid 0}$			
			1	1010		1	$0{ }^{1 \mid 0}$			
			1	$1{ }^{1 \mid}$		1	$1{ }^{1 \mid 1}$			
			1	- 1\|0		1	1 0\|0			
			1	(011		1	0 0\|1			
		(e) $5^{\text {th }}$			(f) $6^{\text {th }}$					

Fig. 5 Permutations - example 1 .
From each of these permutations the loca combinations are extracted and grouped in th table of 'global results' in Fig. 6, it is crucial to note the presence in the table of six identica dicath the combin 'elusive set' indicating a recursive 'elusive set'.

1	1	1	0	1	1
0	1	1	1	1	1
1	1	1	0	1	1
0	1	1	1	1	1
1	0	0	1	0	0
1	1	1	1	1	1
0	1	1	0	1	1
1	0	0	1	0	0
1	1	1	1	1	1
0	1	1	0	1	1
1	0	0	1	0	0
1	0	0	1	0	0
1	0	0	1	0	0
1	0	0	1	0	0

Fig. 6 Global Results - example 1
Fig. 7a presents the results of performing purification of repeated combinations on ginal results, only four of the fourteen stage. Three of these results will filtration the form of 'elusive sets' however at the ime of performing the procedure described reviously to eliminate 'ghost sets' the last wo rows are discarded because they presen edundant combinations that do not provide direct information to the solution, this fina depuration result is presented in Fig. 7b.

(a) Global Results without repetitions
$\begin{array}{llllll}1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0\end{array}$
(b) Global Results without ghost set

Fig. 7 Depurations results - example 1.
Finally, the translation to traditional algebra notation is done by analyzing the bits that do changes only in the first bit while the second one remains constant in all of them, applying a logical OR (+) connection between the rows, the final Boolean function solution is (B.C) (A $\sim B \sim C$).

B.Example number 2

From the vector $X \mathrm{~T}=(1,0,0,1,1,0,0,1)$, six existing in Fig. 8 It is interesting to and presente permutations that all true outputs (logic 1s) can be grouped in one or some of the tables, therefore, in the filtered results it will be observed that all 'elusive set' were eliminated.

0	0 010	0	0	010		0		0	0	
1	0 0\|1		0	${ }_{011}$		1	${ }_{0} 10$	0	0	
1	1 0\|0	1	0	$1 \mid 0$	1	1	${ }_{0} 10$	1	0	$1{ }^{1}$
0	010		0	$1 \mid 0$		0	0\|1	1	0	0\|
0	$1{ }^{1 \mid 1}$	0	1	$1 \mid 1$	1	0	${ }_{1 / 0}$	1	1	${ }^{\circ} 1$
1	$11 \mid 1$		1	1\|1		1	${ }_{1 \mid 1}$	1	1	1\|1
1	0 1\|0	1	1	010	0	1	${ }_{1 / 1}$	0	1	1\|
0	0 1\|0		1	010		0		0	1	
(a) $1^{\text {t }}$		(b) $2^{\text {nd }}$			(c) $3^{\text {rd }}$			(d) $3^{\text {dd }}$		
			0	0 010		0	0 010			
			0	$0{ }^{1 \mid 0}$		0	1010			
			01	$11 \mid 1$		0	$1{ }^{1 \mid 1}$			
			01	1010		0	- 1\|0			
			11	1 0\|0		1	$0{ }^{1 \mid 0}$			
			11	$1{ }^{1 / 1}$		1	$1{ }^{1 / 1}$			
			1	- 1\|0		1	1 0\|0			
			1 0	0 0\|1		1	- 0\|1			
		(e) $5^{\text {th }}$			(f) $6^{\text {th }}$					

n Fig. 9 the 'local results' were grouped into the 'global results' array and sorted by placing the 'elusive sets' at the end (criterion presented in Fig 4), those being the last six rows of th table before the purification stage.

Bits	Time [s]
2	0.0828
3	0.1115
4	0.1804
5	1.1327
6	23.2123
7	1996.5976

Table I Computational time cost.
$t=\left(9.8338294 \cdot 10^{-9}\right) \cdot e^{(3,7191 \cdot n)}$ (2)

The qualification study yielded multiple truth tables sorted using Gray code (permutations), each one of them with unique 'true output' (logic 1's) clusters as shown with the continuous vertical lines in Fig. 11. ${ }^{+}$(B.C). Both presented examples wer nd confirming the operation and effectiveness the methodology.
c. Computational effort \& qualification study Table I compiles the average running time and 7 bits. As can be seen, the running time ncreases exponentially with the increment of inputs bits ' n ' due to the augment of tables (n!). This behaviour can be represented with (2) obtained through a regression method With the equation, a simplified expressio f the computational cost of the algorithm is achieved.
The first filtering step presented in Fig. 10a eliminates the repeated combinations between rows moving from fourteen combinations only five, of which three remain to be eliminating 'ghost sets' are presented, onl wo final combinations were conserved and al remaining elusive sets were eliminated.

Fig. 11 Rating equation applied to 3 permutation tables.
From this clustering, (3) can be developed where: ' m ' represents the number of groups found on each table and ' n ' is the number o rue values in each group, the result of such qualification is exemplified in Fig. 11

$$
\begin{equation*}
\alpha=\sum_{i=0}^{i=m}\left(3^{n_{i}}\right) \tag{3}
\end{equation*}
$$

The second permutation has higher simplification potential with an alpha value o the 24 permutations were used.

V. DISCUSSION

the case of the method effectiveness, some cases were detected where the degre simplification obtained was not fully accomplished compared to other methods or instance, in the 4-bit function previously presented (Fig. 4a), the solution with the proposed method deduced from the 'global
combination' table was: (A. ~ C. $\sim D)+$ (A.C.D) (\sim B. $\sim C \cdot D)+(\sim A \cdot C \cdot D)+(\sim A \cdot \sim C \cdot \sim D)$ while the equivalent solution obtained by BooleDeusto was: ($\sim C \cdot \sim D)+(C \cdot D)+(\sim B \cdot \sim C)$. It can be deduced that the method yields accurate results but not as effective as other methods o an improvement in the depuration stage is eeded.

Regarding the performance of the method the time used for the programmed algorithm to solve the functions is longer than the one needed by Boole-Deusto. However, it is considered that significant improvements can be achieved and these results can be reduced considerably by improving steps taken on the algorithm, e.g. analyzing only the truth table xplained below. Also, (2) and the results of the datasets were compared to well-known growth rate models and datasets presented by [13], this comparison confirms that the proposed model behaviour should be similar to an exponentia model

The qualification procedure could allow reducing the computational time by discarding permutations. During the various testing stages, a characteristic behaviour has been observed in the way in which the 'local results' are organized in the 'global results' array Therefore, it is considered that by applying (3) o qualify the permutations would be possible to establish a combination order that allows a more profound simplification by eliminating information to the resolution. Nonetheless, the mprovement of the output stage would be covered in further studies.

V. CONCLUSION

his paper proposes the so-called PGC method system problem by using Gray code principles and Boolean algebra. The main advantage o the proposed method is that it does not require n-depth knowledge of Boolean algebra, and unlike graphical methods, the outcome does not require visual inspection. Moreover, the
method is simple to implement and deploy in any programming tool since it does not require complex development techniques or advanced levels of analysis.
The proper operation of the method was demonstrated by comparing solutions with manual methods and Boole-Deusto software. Although in some cases, the solution obtained did not represent the best possible esult, an adequate degree of simplification was achieved, and all outputs obtained by the different methods are correspondingly equivalent. Furthermore, an equation that algorithm needs to solve a problem based on the number of logical inputs helps to estimate the computational time of the analyzed system before its deployment. Even though the computational time of the algorithm might be more significant than other methods, a possible step of the implementation has bee dentified as the future step of optimization f future developments of the PGC method.

Finally, the described method could also be extended to solve sequential logic problems, ogic circuits or even for the academic purpos of using a flat interpretation of Hamiltonia hypercubes.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of M.Sc. Richard Andrade and M.Sc Jose Beltran for their useful and valuable suggestions during the performance of the project have helped the team to direct th ocus of the analysis in the right track.

REFERENCES

[1] J. P. Roth, "Algebraic topological methods for the synthesis of switchin systems. I.," Transactions of the American 1958.
[2] W.V. Quine "A way to simplify truth functions." The American mathematica onthly 62.9 , pp. 627-631, 1955
[3] M. Karnaugh, "The map method for synthesis of combinational logic circuits," Transactions of the American Institute of Electrical Engineers, Part pp. 593-599, 1963.
[4] R.B Hurley, "Probability maps," IEE Transactions on Reliability 12.3 pp. 39 44, 1963.
[5] Astola, Jaakko, and R. Stankovic. "Fundamentals of Switching Theory and Logic Design A Hands-on Approach, E.W. Veitch,
simplifying truth funct method for of the ACM national meeting (Pittsburgh) 1952.
[7] Bitner, R James., Gideon Ehrlich, and E.M. Reingold. "Efficient generation of the binary reflected Gray code and it applications," Communications of th ACM 19.9, pp. 517-521, 1976.
[8] W. Press, et al. Numerical recipes in Fortran 77: volume 1, volume 1 of Fortran numerical recipes: the art of scientific computing. Cambridge university press. J. Zubia, J. García, Sanz Martínez, and S Borja, "BOOLE-DEUSTO, la aplicación para sistemas digitales," 2001
[10] J. Dybizbanski, and A. Szepietowski, "Hamiltonian paths in hypercubes with local traps," Information Sciences 375, pp. 258-270, 2007.
[11] K. Sankar, V. Jaya, M. Pandharipande and P. S. Moharir. "Generalized gray codes," Proceedings of 2004 International Symposium on Intelligen Signal Processing and Communicatio
[12] D. Benavides "Diseño imp
D. Benavides, "Diseño, implementación matemáticas en MAD 2," pp. 265. 2019. [13] L. Egghe and I. Ravichandra Rao "Classification of growth models based on growth rates and its applications, Scientometrics 251, pp. 5-46, 1992.

AUTHORS

César Troya-Sherdek

César David Troya Sherdek, Marketing / Sales operation Business Intelligence Analyst in General Motors Ecuado for the electronics department, Cum Laude in Mechatroni Engineering from the International University of Ecuado MBAc from ADEN University, has worked in research groups in the aeronautics area, aerospace, mathematics and computing, also lectured on data science and artificia intelligence.

Jaime Molina
Jaime Vinicio Molina Osejos, Professor at SEK International University Auxiliary Investigator by the Senescyt, Master in Design, Production and Industrial Automation. Leader of the
 master's Degree in Mechanical Design, Manufacturing of Vehicle Autoparts (2016-2018). Coordinator of the Careers Mechanical Engineering in: Design and Materials (2O12 2014), Member of the Research Committee of the UISEK and Kachariy Higher Technological Intitute

Valentin Salgado-Fuentes

Gustavo Moreno

Gustavo Adolfo Moreno Jimenez is Professor at ITK Instituto Tecnologico Kachary director of Electronics area. He received his Master of Science in Technology Management from Marshall University (United States), his Master in Pedagogy and University Management from SEK University from ESPE University (Ecuador). He is a Senescyt certified nvestigator, winner of "Ideas Bank" Senescyt Award in 2015, and winner of "Teaching Best Practices" SEK University Award in 2017.

