
ISSN:1390-9266 e-ISSN:1390-9134 LAJC 202332

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol X, Issue 2, July 2023

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 202232

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol IX, Issue 2, July 2022

ARTICLE HISTORY

Received 20 Jan 2023
Accepted 12 May 2023

Marline Ilha da Silva
Federal Institute of Education of Rio Grande 
do Sul
Porto Alegre, Brazil
marline.ilhadasilva@gmail.com
ORCID: 0000-0002-0236-1227

Joice Chaves Marques
Inst. of Mathematics, Statistics and Physics
Federal Univ. of Rio Grande
Rio Grande, Brazil
joicec.marques@hotmail.com
ORCID: 0000-0003-2137-2164

Adelaida Otazu Conza
Faculty of Mathematical Physics
National University of the Altiplano 
Puno, Peru
aotazu@unap.edu.pe
ORCID: 0000-0003-4793-0400

Adriano De Cezaro
Inst. of Mathematics, Statistics and Physics
Federal Univ. of Rio Grande
Rio Grande, Brazil
decezaromtm@gmail.com
ORCID: 0000-0001-8431-9120 

Ana Carla Ferreira Nicola Gomes
Inst. of Mathematics, Statistics and Physics
Federal Univ. of Rio Grande
Rio Grande, Brazil
anagomes.mat@gmail.com
ORCID: 0000-0003-2815-1612

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
, I

ss
ue

 2
, J

ul
y 

20
23

3333

M
. d

a 
S

ilv
a,

 J
. C

ha
ve

s 
M

ar
q

ue
s,

 A
. O

ta
zu

 C
o

nz
a 

,A
. D

e 
C

ez
ar

o
, a

nd
 A

. F
er

re
ir

a 
N

ic
o

la
 G

o
m

es
  

“T
he

 S
ti

ff
ne

ss
 P

he
no

m
en

a 
fo

r 
th

e 
E

p
id

em
io

lo
g

ic
al

 S
IR

 M
o

d
el

: a
 N

um
er

ic
al

 A
p

p
ro

ac
h”

,
La

ti
n-

A
m

er
ic

an
 J

o
ur

na
l o

f 
C

o
m

p
ut

in
g

 (
L

A
JC

),
 v

o
l. 

10
, n

o
. 2

, 2
0

23
.

    The Stiffness 
Phenomena for the 

Epidemiological SIR 
Model: a Numerical 

Approach



35ISSN:1390-9266 e-ISSN:1390-9134 LAJC 202334
DOI: 10.5281/zenodo.8067335

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol X, Issue 2, July 2023 
 

The Stiffness Phenomena for the Epidemiological 
SIR Model: a Numerical Approach 

 

Marline Ilha da Silva                          
Federal Institute of Education of  Rio 

Grande do Sul                                         
Porto Alegre, Brazil 

marline.ilhadasilva@gmail.com  
ORCID: 0000-0002-0236-1227 

Adriano De Cezaro                            
Inst. of Mathematics, Statistics and 

Physics Federal Univ. of Rio Grande 
Rio Grande, Brazil 

decezaromtm@gmail.com         
ORCID: 0000-0001-8431-9120

                                                         
Joice Chaves Marques                      

Inst. of Mathematics, Statistics and 
Physics Federal Univ. of Rio Grande 

Rio Grande, Brazil 
joicec.marques@hotmail.com    

ORCID: 0000-0003-2137-2164 

Ana Carla Ferreira Nicola Gomes    
Inst. of Mathematics, Statistics and 

Physics Federal Univ. of Rio Grande 
Rio Grande, Brazil 

anagomes.mat@gmail.com        
ORCID: 0000-0003-2815-1612

                                                   
Adelaida Otazu Conza                                                     

Faculty of Mathematical Physics   
National University of the Altiplano 

Puno,  Peru             
aotazu@unap.edu.pe                  

ORCID: 0000-0003-4793-0400 

 

 
 
 
 
 

Abstract—Mathematical models are among the most successful 
strategies for predicting the dynamics of a disease spreading in a 
population. Among them, the so-called compartmental models, 
where the total population is proportionally divided into 
compartments, are widely used. The SIR model (Susceptible-
Infected-Recovered) is one of them, where the dynamics between 
the compartments follows a system of nonlinear differential 
equations. As a result of the non-linearity of the dynamics, it has no 
analytical solution. Therefore, some numerical methods must be 
used to obtain an approximate solution. In this contribution, we 
present simulated scenarios for the SIR model showing its stiffness, 
a phenomenon that implies the necessity of a small step size choice 
in the numerical approximation. The numerical results show that the 
stiffness phenomenon increases with higher transmission rates 𝛽𝛽 and 
lower birth and mortality rates 𝜇𝜇. We compare the numerical 
solutions and errors for the SIR model using explicit Euler, Runge 
Kutta, and the semi-implicit Rosenbrock methods and analyze the 
numerical implications of the stiffness on them. We conclude that 
any accurate numerical solution of the SIR model will depend on an 
appropriately chosen numerical method and the time step, in terms 
of the values of the parameters  𝛽𝛽, 𝜇𝜇. 

Keywords— Stiffness, SIR model, Numerical Methods 

I. INTRODUCTION 
Since the pioneering work of Bernoulli [1], mathematical 

models have proved to be a fundamental tool for predicting 
the dynamics of infectious diseases. In particular, the recent 
changes in the UK’s strategies regarding the COVID-19 
pandemic [2] strongly collaborate to reaffirm such a claim. It 
turns out that an enormous number of mathematical models 
and simulating scenarios were recently proposed and 
analyzed for the COVID-19 outbreak, making it hard to 
attempt a complete literature overview. Nevertheless, at the 
heart of many of these proposed models are SIR-like 
compartmental models, originally proposed by Kermack & 
Mckendrick [3]. In other words, unless some compartment 
clustering (summarizing individuals in distinct 
compartments) is used, such proposed models assume that at 
any time 𝑡𝑡 ≥ 0 of the underlying diseases, the total population 

𝑁𝑁(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝑅𝑅(𝑡𝑡) is divided into compartments of 
susceptible 𝑆𝑆(𝑡𝑡), infected or infectious 𝐼𝐼(𝑡𝑡) and recovered or 
removed 𝑅𝑅(𝑡𝑡). Using the law of mass action, Kermack & 
Mckendrick [3] concludes that the diseases must follow the 
SIR nonlinear dynamics: 

 

  (1) 

where ′: = !
!"

, 𝛽𝛽 is a disease transmission rate, 𝜇𝜇 is birth 
and mortality rates (that for simplicity we assume to be the 
same), 𝛾𝛾 is the inverse of the mean infectious period. We 
assume that all the parameters are time-independent. 

In the dynamics (1), the following initial conditions are 
considered (IC) 
 
𝑆𝑆(0) = 1 − 𝐼𝐼(0), 𝐼𝐼(0) ≥ 0, 𝑅𝑅(0) = 0,	  (2) 

 
characterizing the model as initial value problems (IVP) 

for nonlinear systems of ordinary differential equations 
(ODE’s). 

Given the non-linearity, SIR model (1) - (2) does not have 
an explicit solution. As a result, any attempt to predict disease 
dynamics must be obtained from some approximation of the 
solution provided by numerical methods [4]. This necessity 
of using numerical methods drives the main question of this 
contribution: Are there some parameter choice scenarios that 
characterizes the SIR model to be stiff? 

The phenomenon of stiffness in a (IVP) means that the 
numerical solutions are unstable and/or its accuracy is largely 
affected using any explicit numerical methods. It imposes the 
need for a very small time step to approximate the solution 
and, consequently, becomes computationally expensive. 

In Section II, we revisit some well-known properties of 
the solution of the (IVP) of the SIR model. Such properties 
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will help to justify the numerical analysis that follows. In 
Section III, we present a definition of stiffness. Moreover, we 
present and compare the obtained results for distinct scenarios 
of parameter choices for the model. In Section IV, we show 
the consequences of the stiffness phenomena in the numerical 
solution of the SIR model using explicit and implicit 
numerical approximations. The main contribution of this 
manuscript is the conclusion that the SIR model is indeed 
stiff, for large transmission rates 𝛽𝛽. The analysis of the error 
in the numerical solutions allows us to recommend the use of 
appropriate numerical methods as well as the time-step size. 
In Section V, we formulate the final conclusions. 

  

II. SOME SIR MODEL PROPERTIES  
In this section, we revisit some of the well-known SIR 

model properties reformulated from [5], that will be used to 
justify the numerical analysis that follows. 
 
Theorem 1. Let the assumptions for the SIR model (1) with 
initial conditions (2) hold true. Then, the (IVP) (1) - (2) 
corresponding to the SIR model have a unique differentiable 
solution 𝑌𝑌(𝑡𝑡) = (𝑆𝑆(𝑡𝑡), 𝐼𝐼(𝑡𝑡), 𝑅𝑅(𝑡𝑡))#. Since the initial 
conditions (2) for are non-negative, each of the coordinates of 
the solution 𝑌𝑌(𝑡𝑡) remains non-negative for all 𝑡𝑡 ≥ 0. 

Note that, summing all the equations in models (1), we 
conclude that the total population is constant. To keep things 
simple, we will assume that 𝑁𝑁 is normalized so that 𝑁𝑁(𝑡𝑡) =
1, for all 𝑡𝑡 ≥ 0. It follows from the first equation in that 𝑆𝑆(𝑡𝑡) 
is decreasing. Furthermore, we get from Theorem 1 that  

 

           (3) 
 

 As we will see in Section IV, the stiffness 
phenomena present in the SIR model imply that numerical 
solutions obtained from an explicit numerical scheme might 
not satisfy Theorem 1 and equation (3) in particular.  
 

III. NUMERICAL METHODS AND STIFFNESS 
PHENOMENA FOR SIR MODEL 

 
Let 𝑌𝑌(𝑡𝑡) be the unique solution of the SIR model (1) - (2) 

as shown in Theorem 1, whose coordinates will be denoted 
by 𝑌𝑌$(𝑡𝑡),	for 𝑖𝑖 = 1,2,3 respectively. According to [4], the step 
of a numerical method to obtain the approximation 𝑌𝑌%$ for the 
exact solution 𝑌𝑌$(𝑡𝑡%) of the (IVP), for 𝑡𝑡% ∈ [0, 𝑇𝑇], can be 
written, in general, as follows 

;𝛼𝛼&𝑌𝑌%'&$
(

&)0

= ℎ%𝜓𝜓*>ℎ%, 𝑡𝑡%, ⋯ , 𝑡𝑡%'( , 𝑌𝑌%$ , ⋯ , 𝑌𝑌%'($ @,	 

where 𝑘𝑘 ≥ 1 is the number of preview steps used to 
compute 𝑌𝑌%$. The values 𝛼𝛼&, for 𝑗𝑗 = 0, ⋯ , 𝑘𝑘 are numerical 
method-specific constants, ℎ% is the method step-size. The 

function 𝜓𝜓* is defined in terms of evaluating the right-hand 
side 𝐹𝐹>𝑡𝑡, 𝑌𝑌(𝑡𝑡)@ of the system of differential equations (1). 

 In general terms, we can classify the numerical methods 
as: Single-step if 𝑘𝑘 = 1, or multi-step if 𝑘𝑘 > 1. Linear if 𝜓𝜓* 
is linear in the evaluation of 𝐹𝐹>𝑡𝑡, 𝑌𝑌(𝑡𝑡)@ and non-linear 
otherwise. Implicit if 𝜓𝜓* depends on 𝑌𝑌% and explicit 
otherwise. 

In the numerical simulations for the SIR model (1) - (2) 
that follows, we will adopt the following methods: A) the 
explicit, single-step Euler method; B) the explicit, single-step 
Runge-Kutta method; C) the semi-implicit, fourth order, four-
stage Rosenbrock method, e.g, [4]. 
 

A. The stiffness phenomena 
 

The phenomena of stiffness in solving (IVP) appeared at 
the beginning of the 20th century. It was [6] one of the first 
to notice some implicit numerical methods perform better 
than explicit ones for stiff (IVP). This is because the implicit 
methods have an unlimited stability region that covers the 
entire half-plane complex with a negative real part or at least 
an unlimited part of it, e.g. [4]. 

 A well-accepted definition of the phenomena of stiffness 
follows: 

Definition 1. Let 𝜆𝜆&(𝑡𝑡) ∈ ℂ, for 𝑗𝑗 = 1, ⋯ , 𝑛𝑛 the eigenvalues 
of the Jacobian matrix 𝐽𝐽(𝐹𝐹(𝑡𝑡, 𝑌𝑌(𝑡𝑡))), where 𝐹𝐹(𝑡𝑡, 𝑌𝑌(𝑡𝑡)) is the 
right-hand side of the (IVP). 

The (IVP) is called stiff in some interval 𝐼𝐼 of the real line 
if 𝑅𝑅𝑅𝑅(𝜆𝜆&(𝑡𝑡)) < 0 for all 𝑗𝑗 = 1, ⋯ , 𝑛𝑛 and stiffness ratio 

 
If the (IVP) is stiff, then certain numerical methods for 

solving the equation become numerically unstable unless the 
step size is taken to be extremely small. This is the case for 
most explicit numerical schemes. See [4] for some examples. 

B. The stiffness phenomena for SIR model    

The Jacobian matrix for model (1) for an arbitrary point is 
given by 

 

Then, the eigenvalues   𝜆𝜆&,  j = 1, 2, 3 of the Jacobian matrix 
are given by: 

 

 

 
Below, the stiffness ratio for the (IVP) SIR model (1) - 

(2) is numerically investigated. Table I displays various 
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values of the stiffness ratio 𝜉𝜉 (see Definition 1) as a function 
of 𝛽𝛽 and 𝜇𝜇. The numerical results presented in Table I suggest 
that the SIR model’s rigidity becomes increasingly greater as 
we increase the 𝛽𝛽 and/or decrease the 𝜇𝜇. 

TABLE I.  STIFFNESS RATIO ξ FOR SIR MODEL, AS A FUNCTION OF 𝛽𝛽 AND 𝜇𝜇. 
 

β μ=0.01 μ=0.001 μ=0.0001 

0.5 ξ=12 ξ=131 ξ=1354 

1.5 ξ=39 ξ=392 ξ=3923 

10 ξ=808 ξ=8090 ξ=80908 

12 ξ=986 ξ=9870 ξ=98708 

18 ξ=1442 ξ=14430 ξ=144308 

25 ξ=1766 ξ=17666 ξ=176668 

 

 
Before delving into the effect of the stiffness ratio on 

numerical simulations of the SIR model (1), we should 
consider the epidemiological implications of the parameters 
𝜇𝜇 and 𝛽𝛽 as shown in Table I. 
 

Remark 1. Small values of 𝜇𝜇 mean that the birth and 
mortality rates are very low, in proportion to the total 
population, during the disease duration. It is a typical effect 
for a short time simulation. Large values of the transmission 
rate 𝛽𝛽 have a more debatable epidemiological meaning. 
However, there are highly contagious diseases such as 
measles, pertussis, and tuberculosis that are already 
documented in the literature [7, 8]. Furthermore, many 
diseases transmission depends on population density (high for 
high-density populations) and environment (for example, for 
respiratory transmitted diseases, a crowded and closed 
environment implies higher transmission rates) [9]. To put it 
another way, a disease that has not yet been reported may 
have a higher transmission rate than those already reported. 

 

IV. NUMERICAL RESULTS 
 In this section, we present numerical simulated 
results and show the implications of the stiffness ratio (see the 
stiff ration in Table I on the numerical approximated 
solutions for the SIR model. We present the simulations using 
e explicit Euler method, the two-stage and second-order 
Runge-Kutta method (RK22), the four-stage and fourth-order 
Runge-Kutta method (RK44) and Rosenbrock method [4]. In 
the simulation, the step-size ℎ = 0.1	 is	 used	 for	 all	 the	
methods	except	for	the	Rosenbrock method, for which the 
adaptive step-size is used [4]. The initial conditions 𝑆𝑆+ =
0.9, 𝐼𝐼+ = 0.1 and 𝑅𝑅+ = 0	 are	 used and the parameter 𝛾𝛾 =
0.35	 is	 keeped	 fixed.  The above mentioned methods are 
implemented in Fortran 90 with a double precision, GNU 
Fortran Compiler (Ubuntu 18.04.5 LTS operational system 
64 bits) and running in a processor	 	Intel®		Core(TM)i5 −
5200𝑈𝑈 CPU@2.20𝐺𝐺𝐺𝐺𝐺𝐺 × 4. 
 

 
(a) Simulated scenarios using the Euler method. 

 

 
(b) Simulated scenarios using the RK22 method. 

 

 
(c) Simulated scenarios using the RK44 method. 

 
(d) Simulated scenarios using the Rosenbrock method  

 
Fig. 1. Simulated scenarios for the infected populations I(t). 
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In Fig. 1, we show the simulated scenarios of the infected 
population, for choices of 𝜇𝜇 = 0.001 and values of 𝛽𝛽=0.5, 
1.5, 5.0, 10, 12, 18, 25, respectively. In the simulation with 
the Rosenbrock method, the adaptive step-size, typically of 
the method, is used. The simulations for the remaining 
methods use the step-size h = 0.1.  

For the simulated scenario with 𝛽𝛽 = 25, the first and most 
obvious consequences of the stiffness phenomenon can be 
seen. In this particular scenario, the approximate solution 
using the Euler method oscillates as shown in Fig. 1(a). The 
oscillations disappear in the numerical solutions using the 
RK22, RK44 and Rosenbrock methods, as can be observed in 
Fig. 1(b), Fig. 1(c) and Fig. 1(d). 

 

 
(a) Susceptible population S(t). 

 

 
(b) Infected population I(t). 

 
Fig. 2. Simulated scenarios using the numerical methods for 𝛽𝛽 = 25. 
 

A zoom on the numerically simulated scenario for 𝛽𝛽 = 25 
of the susceptible and infected is depicted in Fig. 2 (a) and 
Fig. 2(b), respectively, using all the numerical methods under 
investigation. It turns out that the oscillations of the numerical 
solutions obtained by the explicit Euler method produce 
negative values for the susceptible (see Fig. 2 (a)) and values 
larger than 1 for the infected population (see Fig. 2 (b)), which 
contradicts Theorem 1. Moreover, the simulated scenarios 
using the RK22 and RK44 methods present non-smooth 
solutions and hence also contradict Theorem 1. It can be 
observed in the simulated results that only the Rosenbrock 
method, the method designed for stiff problems [4], presents 
an approximate solution that satisfies Theorem 1. 

The remaining question addressed in this contribution is 
whether the stiffness phenomenon for the SIR model appears 
only for very large 𝛽𝛽. The simulated solution for the 
susceptible and infected population, with the choice of 𝛽𝛽 =
12, is depicted in Fig. 3(a) and Fig. 3(b), using the Euler 
method with step-size ℎ = 0.1 and the Rosenbrock method 
with adaptive step-size. It can seem that the numerical 
solution using the Euler method is not smooth near the peak 
of the infection and negative values for the susceptible are 
obtained (observe the zoom in Fig. 3(a)), contradicting 
Theorem 1. The numerical solution using the Rosenbrock 
method demonstrates the adaptation of the step size near the 
infection peak is much smaller than ℎ = 0.1 (see Fig. 3(a)). 

 

 
(a) Susceptible population. 

 

 
(b) Infected population. 

 
Fig. 3. Simulated scenarios using the numerical methods of Euler and 
Rosenbrock for 𝛽𝛽 = 12. 
 

 In Fig. 4(a), we show the values for the step-sizes used 
by the Rosenbrock method with adaptive step for the 
simulated scenarios with 𝛽𝛽 = 12. It is worth mentioning that 
a small step-size is needed in the regions close to the peak of 
infection; that coincides with the region of the large 
discrepancies between the two methods presented in (see Fig. 
3). In Fig. 4(b), we depicted the numerical solutions for the 
susceptible and infected populations using the Euler and 
Rosenbrock methods with the smallest step-size ℎ = 0.0027 
adopted by the Rosenbrock method. As a result of using a 
very small step-size, the Euler method shows a more accurate 
numerical solution. Indeed, it is a consequence of the stiffness 
of the SIR model.    
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(a) Adaptive step-size h used by the Rosenbrock method. 

 

 
(b) Numerical solutions obtained for of S(t) and I(t) by the Euler and 

Rosenbrock methods using the step-size h = 0.0027 for β = 12. 
 
Fig. 4. h variable (a); Simulated solutions of S(t) and I(t) using the Euler 
method with h = 0.0027 and Rosenbrock method (b). 

Table II and Table III show the difference in the maximum 
and quadratic norm of the simulated infected population using 
the methods discussed in this contribution for different 
scenarios of 𝛽𝛽. 

The difference between the numerical solutions of the 
infected population using the Euler and Rosenbrock methods 
with step-size ℎ = 0.1 is depicted in Fig. 5 for some scenarios 
of choice for 𝛽𝛽. The absolute value of the difference is 
monotonically increases with 𝛽𝛽, as shown in the second 
column of Table II. The difference is approximately 10% in 
absolute value for 𝛽𝛽 = 10, 20% in absolute values for 𝛽𝛽 =
18, and 40% in absolute values for 𝛽𝛽 = 25. 

The difference between the numerical solutions of the 
infected population using the RK44 and Rosenbrock methods 
with step-size ℎ = 0.1 is depicted in Fig. 6 for some scenarios 
of choices of 𝛽𝛽. As it can be seen from the results in the fourth 
column of Table II, the difference is significant only for 𝛽𝛽 =
25 (see also Fig. 5(d)). 

Based on the results in Fig. 5, Fig. 6 and the one in the 
Table II and Table III, we can conclude that as the stiffness 
of the SIR model increases (as 𝛽𝛽 increases), the absolute 
difference between the Euler or RK44 and Rosenbrock 
methods becomes concentrated near the infection’s peak. The 
results show that the stiffness of the SIR model suggests using 
a small numerical step-size or a method designed for solving 
stiff problems, such as the Rosenbrock method. 

 

 

 

TABLE II. ABSOLUTE DIFFERENCE IN THE MAXIMUM NORM (𝐸𝐸!), OBTAINED BY COMPARE THE NUMERICAL SOLUTION OF THE 
INFECTED POPULATIONS USING EULER, RK22, RK44 AND ROSENBROCK WITH STEP-SIZE ℎ = 0.1 FOR DISTINCT SCENARIOS OF 

CHOICES OF 𝛽𝛽, WHERE 𝐸𝐸! = 𝑚𝑚𝑚𝑚𝑚𝑚
"#$#%!

(|𝑒𝑒$|), 𝑒𝑒$ IS THE DIFFERENCE BETWEEN THE NUMERICAL SOLUTION OBTAINED WITH TWO 

METHODS AND 𝑛𝑛& IS THE NUMBER OF MESH POINTS. 

 

β EUL-RK44 ROSEN-EUL ROSEN-RK22 ROSEN-RK44 

0.5 6.31629999E-004 6.32139999E-004 3.10000000E-006 8.40000000E-007 

1.5 9.31865999E-003 9.37654999E-003 6.65800000E-005 8.13800000E-005 

5.0 4.31432800E-002 4.45318200E-002 3.14857000E-003 1.53705999E-003 

10 9.75375600E-002 0.1046652200000 1.60849599E-002 7.12765999E-003 

12 0.1254940800000 0.1386138800000 2.24853200E-002 1.31198000E-002 

18 0.1652883499999 0.1921446000000 6.42736900E-002 3.78952900E-002 

25 0.25355632000 0.3798633000000 0.1938273099999 0.16452352999999 
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TABLE III. DIFFERENCE IN THE QUADRATIC NORM (𝐸𝐸') OBTAINED BY COMPARE THE NUMERICAL SOLUTION OF THE INFECTED 
POPULATIONS USING EULER, RK22, RK44 AND ROSENBROCK WITH STEP-SIZE ℎ = 0.1 FOR DISTINCT SCENARIOS OF CHOICES OF 𝛽𝛽, 

WHERE 𝐸𝐸' = 2∑ (𝑒𝑒$)'
	%!
$)" , 𝑒𝑒$ IS THE DIFFERENCE BETWEEN THE NUMERICAL SOLUTION OBTAINED WITH TWO METHODS AND 𝑛𝑛& IS THE 

NUMBER OF MESH POINTS. 

Β EUL-RK44 ROSEN-EUL ROSEN-RK22 ROSEN-RK44 

0.5 5.19327356E-003 5.19632985E-003 2.62110358E-005 7.58340293E-006  

1.5 4.56074598E-002 4.58760091E-002 3.41815002E-004 4.92608905E-004 

5.0 0.1091601723987 0.1142371665391 9.29380985E-003 7.36393037E-003 

10 0.1660532290951 0.1817178386566 3.18795925E-002 2.08116287E-002 

12 0.1850148159726 0.2059415688449 4.37253865E-002 2.66299399E-002 

18 0.2434880862085 0.2855538441138 0.1073111915718 5.60055913E-002 

25 0.5861619984467 0.6758640423753 0.3019573642769 0.2053197286638 

 
 

(a) β = 0.5 
  

 
 

(b) β = 1.5 
 

 
(c) β = 18 

 

 
(d) β = 25  

 
Fig. 5. Difference between the numerical solution of the infected population 
using Euler and Rosenbrock methods with step-size h = 0.1. Simulated 
scenarios with distinct choices of β. 
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(a) β = 0.5  

 
(b) β = 1.5  

 
(c) β = 18  

 
(d) β = 25 

 
Fig. 6. Difference between the numerical solution of the infected population 
using RK44 and Rosenbrock methods with step-size h = 0.1. Simulated 
scenarios with distinct choices of β. 

V. CONCLUSIONS 
 

In this work, we numerically investigate the stiffness 
phenomena for the epidemiological SIR model. The 
simulated scenarios presented show that the stiffness ratio of 
the SIR model becomes more pronounced as the disease 
contagion rate increases or the rate of birth/mortality 
approaches zero. However, the numerical findings indicate 
that the explicit numerical method have more difficulties to 
obtain a numerical solution satisfying Theorem 1 as 𝛽𝛽 
increases. In particular, the stiffness phenomena imply that 
the numerical solution using explicit methods, such as Euler 
and the RK, does not agree with the theoretical results on 
Theorem 1, while the semi-implicit Rosenbrock method does 
agree with the theoretical results. The analysis of the 
maximum and quadratic difference between the analyzed 
explicit methods and the Rosenbrock method becomes large 
near the peak of the infection. As a result, the explicit methods 
overestimate the peak of infection. 

We also demonstrate how to use the Rosenbrock method 
to determine an optimal step-size in terms of 𝛽𝛽 to use in the 
explicit numerical method, resulting in a more accurate 
numerical solution for the SIR model. This step-size can be 
used in explicit methods, e.g., the Euler’s method, which is a 
good alternative to reduce the computational cost. 

The results obtained in this contribution collaborate with 
the following conjecture regarding the use of explicit 
numerical methods for the SIR model: For a given 𝛽𝛽 choose 
ℎ such that 𝛽𝛽ℎ < 0.1. It will be investigated in detail in future 
contributions. 
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