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Abstract—In this contribution we address the following 
question: what is the behavior of a disease spreading between two 
distinct populations that interact, under the premise that both 
populations have only partial immunity to circulating stains of the 
disease? Our approach consists of proposing and analyzing a multi-
fractional Susceptible (S), Infected  (I), Recovered (R) and Cross-
immune (C)  compartmental model, assuming that the dynamics 
between the compartments of the same population is governed by a 
fractional derivative, while the interaction between distinct 
populations is characterized by the proportion of interaction between 
susceptible and infected individuals of both populations. We prove 
the well-posedness of the proposed dynamics, which is 
complemented with simulated scenarios showing the effects of 
fractional order derivatives (memory) on the dynamics. 

Keywords— Mathematical modeling, Diseases spreading, 
Immunological memory, Population interaction 

I. INTRODUCTION 
The astonishing spread of infection diseases in recent 

years (e.g., influenza and the COVID-19 pandemic) is among 
the main concerns of human civilization because they 
represent one of the main causes of population mortality, e.g., 
[13]. The track of the recent pandemics shows that one 
important mechanism for their global spread is the interaction 
between distinct populations. Furthermore, many infection 
diseases are capable of gene recombination with those of 
currently circulating strains, giving rise to new viral sub-types 
capable of escaping (partially) the immune system defenses 
of previously infected or vaccinated hosts, conferring only a 
partial immunity (cross-immunity) of the population, See, 
[1,10] and references therein. 

Many mathematical models have been proposed to 
describe the dynamics of diseases and their mutations in the 
population (see [4] for a review). A typical approach uses 
multiple SIR, connected via some cross-immunity 
parameters, to model the interactions between individuals that 
are (or have been) infected by different viral strains, e.g., [2]. 
The analysis of these models has shown that multiple strains 
of certain diseases can persist in the human population and 
that their prevalence can exhibit self-sustained oscillations 
through time. In [12] the author suggested a model with 
immunity loss to incorporate re-infection by distinct strains. 

In [9] the proposed model incorporates a ‘temporary partial 
immunity’ for the R compartment to handle the virus 
mutation. In [3], a new compartment (C), for cross-immune 
individuals (individuals that are not fully susceptible (S) or 
recovered (R)) is introduced. Individuals in this new 
compartment have their immune responses boosted by 
exposition to mutated strains. This model is called SIRC. In 
[7,8], a fractional and multi-fractional dynamics for the SIRC 
model (called (F)-SIRC and (MF)-SIRC models, 
respectively) are proposed and analyzed. The authors show 
that the (MF)-SIRC model is capable of describing with better 
agreement data from the H1N1 influenza diseases. Moreover, 
the fractional dynamics allows for accounting for memory in 
the immune system (immunological memory). 

In the approaches above cited, the interaction between 
populations is not considered. The main contributions of this 
manuscript are the proposal and the analysis of a multi-
fractional SIRC model with two populations that interact 
((MP)-FSIRC model). This method allows determining the 
effects of immunological memory in one sub-population (for 
example, acquired through vaccination) on disease 
propagation into a second sub-population, as well as the 
effects on disease dissemination and cross-immunity.  

Outline: In Section II, we present the (MP)-FSIRC model 
with two populations that interact. We show the well-
posedness of the proposed dynamic in Section III. In Section 
IV, we analyze numerically some simulated scenarios for the 
proposed model. In Section V, we formulate some 
conclusions and future directions.  

II. MATHEMATICAL MODELING 
We assume two distinct sub-populations exist, with the 

total number of individuals in each sub-population 
 distributed in the 

compartments of Susceptible ( ), Infected or Infectious ( ), 
Recovered or Removed ( ) and Cross-immune ( ), for

. Furthermore, there is an interaction between the 
individuals of the distinct populations. Such interactions 
allow susceptible individuals from sub-population  to 
become infected through contact with infected individuals 
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from sub-population  for  and . The 
probability of the aforementioned fact happening is 
proportional to the contact between the distinct sub-
populations and is given by , for  and 

. We also consider that each sub-population has some 
immunological memory and that such immunological 
memory is described by the fractional dynamics given by the 
Caputo fractional derivative operator  of order  

 (see  [5] for the definition of the Caputo  derivative 
and its memory-enhancing effect). 

In other words, the disease dynamics follows the multi-
fractional coupled system (MP)-FSIRC, given by:  

 

                                 
                                       
                               

                         (1) 
                        
 

 
                     
 

, 
 

and initial conditions 

                   (2) 
 

for  and . All the parameters in the model 
(MP)-FSIRC (1) are assumed to be constant. The parameters 

 and are the average inverses of the time spent by 
individuals in the three compartments , and , 
respectively. The birth and mortality rates is given by . The 
average reinfection probability of an individual in  is . 
For , respectively,  represents the infection rate 
between individuals in the same population if , whereas 
represents the infection rate between distinct populations in 
case of . 

 

 

 

 

 

III. WELL-POSEDNESS FOR THE (MP)-FSIRC 
MODEL 

In this section, we show the existence of a unique 
continuous solution 

 
  

 
for  of the (MP)-FSIRC model (1) with initial 

conditions (2). We also show that such a solution is 
continuously dependent on the initial conditions, system 

parameters, and the fractional-order of the Caputo derivatives 
, for . We begin showing some preliminary 

results concerning the (MP)-FSIRC model (1).  
 
Lemma 1: Let , where  is the 
total of individuals of sub-population . Then  is 
constant for any . 

Proof: It follows from the linearity of the fractional derivative 
(see [5]) that  

 
 

 
for . Summing up the right hand side of (MP)-

FSIRC model (1), we have that , for any 
. Hence  is constant, for  (see e.g., [5]) 

and the assertion follows.  

Lemma 2: If a solution  of (MP)-FSIRC (1) model with 
initial conditions (2) exists, then it is uniformly bounded by 

. In particular all the coordinates of  are uniformly 
bounded. 

Proof: Let  be the 1-norm in . It follows that 
, for any . Since  is constant 

(see Lemma 1), the assertion follows.    
 
Let the map  given by  
 

 where 
 

and  are the right 
hand side of~\eqref{sistema:P1}, for , with , 
respectively.  
  
Proposition 1: Let the map  defined above. Then:  
i.  is continuous for . 
ii. There exist constants  and  such that  

.    
iii.   is Lipschitz continuous w.r.t. the second 
coordinate. 
 
Proof: Item i) is derived from the fact that each coordinate of 

 is made up of the sum and product of continuous 
functions. Using Lemma 2, we can conclude that the first 
coordinate of  is such that 
  

  
 

  
,  

 
where  and

. 
 

With analogous arguments presented above for each 
coordinate of , the assertion on item~ii follows. 
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Applying the Mean Value Theorem, we get the existence of a 

 such that, for any , 

,   (3) 

where  is the Jacobian of the map , given by  

.  

Here  denotes the  null matrix. Since 
 where  and  are given by 

 

 and 

  

, 

 
respectively, for , 

, ,
, 

, , 
. On the other hand,  

is given by 

 

 

  

, 

 
where , , 

, , 
, , and 
. 

 

Hence, it follows from Lemma 2 that each coordinate of 
 is uniformly bounded. As a results, there exists 

 such that . Therefore, from (3) and 
the Cauchy-Schwarz inequality, the assertion iii) follows.   

The theorem that follows is the main theoretical result of 
this contribution.   
 
Theorem 1: Let the (MP)-FSIRC (1) and the corresponding 
initial conditions (2). Then: 

[Existence and uniqueness] There is a unique continuous 
solution  for the (MP)-FSIRC model (1), for . 

[Continuous dependence] The (MP)-FSIRC model (1) 
solution  is continuously dependent on the model 

parameters and fractional derivatives , for any
.  

 
Proof: Integrating the (MP)-FSIRC model (1) with order  
for  results in the model being equivalent to Volterra's 
system of equations  
 

    (4) 
             
 

where  and  represents the k-coordinate of  
with , if  and  if .  
Let . Then (4) can be rewritten as 
 

        (5) 
              
 
for , where, 
   

.   
 

Let   be the expression of the vector 
map  with coordinates corresponding to 

, for . We know from Proposition 1 
itens-i)-iii) that  is continuous with respect to  and 
Lipschitz is continuous with respect to . A direct 
calculation reveals that  also meets these 
requirements. Therefore, the Fixed Point Theorem (as used in 
the Picard theorem - see also Theorem 8.3 in [5]) can be 
applied to guarantee the existence of a unique continuous 
solution  for the (MP)-FSIRC (1) with initial conditions 
(2), in the interval  for some . Moreover,   
Proposition 1, ii) implies that  is linearly increased. 
Therefore, the assumptions of Theorem 3.1 in [11] are 
satisfied. It implies that the solution  can be continuously 
extended to the positive real line. It concludes the assertion i). 
Furthermore, Proposition 1 implies that the assumptions of 
Theorem~6.20 - 6.22 in [5] hold true. Hence, item ii) follows.  

 

IV. SIMULATED SCENARIOS 
In this section, we present some simulated scenarios for 

the (MP)-FSIRC (1). The numerical solution for the (MP)-
FSIRC (1) calculated using a trapezoidal type method with a 
mesh size of  of (5), proposed in [6]. Since the mesh-
size corresponds to the time scale, we re-scale all the 
parameters accordingly. The simulations are run for a time 
corresponding to 120 days and for choices of the fractional 
derivatives of order . 

A. Scenario with Symmetric Sub-populations 

In this section, we present distinct scenarios of the 
proposed dynamics for a symmetric population. It means that 

.The remaining parameters are given by  
, , , 

, , $. The initial 
conditions are such that , 
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implying that only the sub-population 1 is infected at , 
whereas the population 2 is infection-free. 

 
Fig. 1. Dynamics of infection on the sub-population 1, in the scenario of 
symmetric populations 

 

Fig. 2. Dynamics of cross-immune on the sub-population 1, in the scenario 
of symmetric populations  

Figures 1 and 2 show the dynamics of infection and cross-
immunity for both sub-populations. Looking only at the 
simulated scenarios (the simulated scenarios in “black---”, 
“cyan---” and “red---” are almost coincident, as well as the 
ones in “blue---” and “green---”) for the sub-population 1, we 
conclude that the best strategy is the one in which the sub-
population 1 has more immunological memory ( ). The 
scenario with  and  (plotted “yellow---”) has 
a minor peck of infection as well as a minor cross-immunity 
percentage, whereas  (no immunological memory in 
the sub-population 1) has a higher peck of infection as well 
as a higher percentage of cross-immunity.  

The simulated scenarios for sup-population 2, presented 
in  Figures 3 and 4 lead to a similar conclusion as described  
above (the simulated scenarios in “blue---” and “red---” as 
well as the ones in “yellow---”, “cyan---” and “green---” are 
nearly identical), where it can be seen that the relation  
corresponds to cases where the diseases have fewer infected 

persons at the epidemiological peck and a lower percentage 
of cross-immunity. 

 
Fig. 3. Dynamics of infection on the sub-population 2, in the scenario of 
symmetric populations 

 
Fig. 4. Dynamics of cross-immune on the sub-population 2, in the scenario 
of symmetric populations 

 
Fig. 5. Dynamics of infection on the total population, in the scenario of 
symmetric populations 



53ISSN:1390-9266 e-ISSN:1390-9134 LAJC 202352
DOI: 10.5281/zenodo.8071103

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol X, Issue 2, July 2023 
 

 
Fig. 6. Dynamics of cross-immune on the total population, in the scenario 
of symmetric populations 

B. Scenario with Non-symmetric Sub-populations 

In the following, we analyze some simulated scenarios of 
the proposed dynamics where the populations are non-
symmetric. In the simulations, we use  and . 
The remaining parameters used are , 

, , , , 
, , for two scenarios of initial 

infections. 

First scenario: The disease starting in sub-population 1: We 
first simulate the scenario where the sub-population has 
infected individuals, while sub-population 2 is free of 
infection at . It is equivalent to the initial condition 

 
Figures 7 to 10 show the dynamics of infection and cross-

immunity for both sub-populations in this scenario (the 
simulated scenarios in “red---”, “cyan---” and “yellow---” are 
almost coincident, as well as those in “blue---” and “green---
”.). Analyzing the results for the sub-population 1 in Figure 7 
and 8, we conclude that the favorable scenario is the one with 
( ). The most favorable scenario is depicted in “black--
-”, in which sub-population 2 has more immunological 
memory ( ). However, we cannot conclude that (

) is the best strategy because the ones with  and 
 (shown in “green---”) are just as bad as the ones with 

no memory (shown in “blue---”). 

 
Fig. 7. Dynamics of infected of the sub-population 1, in the scenario with 
anti-symmetric populations. Diseases starting in the larges sub-population 

 
Fig. 8. Dynamics of cross-immune of the sub-population 1, in the scenario 
with anti-symmetric populations. Diseases starting in the larges sub-
population 

 

Fig. 9. Dynamics of infected of the sub-population 2, in the scenario with 
anti-symmetric populations. Diseases starting in the larges sub-population. 

 

Fig. 10. Dynamics of cross-immune of the sub-population 1, in the scenario 
with anti-symmetric populations. Diseases starting in the larges sub-
population 
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Fig. 11. Dynamics of the infected population, in the scenario with anti-
symmetric populations. Diseases starting in the larges sub-population 

 

Fig. 12. Dynamics of cross-immune population, in the scenario with anti-
symmetric populations. Diseases starting in the larges sub-population. 

The analysis of the dynamics of the total population 
depicted in Figures 11 and 12 shows that the scenarios are 
favorable if both populations have some memory with 

. Otherwise, if  (no memory for the sub-
population 1), then even if the sub-population 2 has some 
memory, it is not enough to diminish the effects of the disease 
(depicted in “green---”). This scenario shows that the strategy 
is to guarantee immunological memory for both sub-
populations, giving more importance to the smallest sub-
population. Hence, the simulated scenarios sugget that any 
vaccination campaing any vaccination campaign should start, 
if possible, as in the symmetric case, in the sub-population 
that is disease-free.   
 

Second scenario: The disease starting in sub-population 2:  
We assume that sub-population 2 has infected individuals 
while sub-population 1 is free of infection at . This 
scenario corresponds to the initial condition 

. 
Figures 13 to 16 show the dynamics of infection and cross-
immunity for both sub-populations in this scenario (the 

simulated scenarios in “red---”, “cyan---” and “yellow---” are 
almost coincident, as well as those in “blue---” and “green---
”.). The results for the sub-population 1 in Figure16 show a 
favorable scenario if ( ) while for the sub-population 2 
is the one with  ( ) depicted in “yellow---”. 

 
Fig. 13. Dynamics of infected of sub-population 1, in the scenario with anti-
symmetric populations. Diseases starting in the smallest sub-population 

 
Fig. 14. Dynamics of cross-immune of sub-population 1, in the scenario with 
anti-symmetric populations. Diseases starting in the smallest sub-population 

 
Fig. 15. Dynamics of infected of sub-population 2, in the scenario with anti-
symmetric populations. Diseases starting in the smallest sub-population 
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Fig. 16. Dynamics of cross-immune of sub-population 2, in the scenario with 
anti-symmetric populations. Diseases starting in the smallest sub-population 

 

Fig. 17. Dynamics of infected of the total population, in the scenario with 
anti-symmetric populations. Diseases starting in the smallest sub-population 

 
Fig. 18. Dynamics of  of the total population, in the scenario with anti-
symmetric populations. Diseases starting in the smallest sub-population 

On the other hand, the simulated scenarios for the total 
population depicted in Figure 17 and 18 show that the 

scenarios are favorable for lower values of , with 
. This scenario shows that the strategy is to guarantee 

immunological memory for the sub-populations jointly, 
giving more importance to the biggest sub-population. This 
means that, in such a scenario, any vaccination campaign 
should start for the sub-population that is disease-free, as 
before.  

V. CONCLUSIONS 
We propose a multi-fractional derivative dynamics for the 

SIRC model for disease dissemination as an alternative to 
describe the existence of immunological memory in a setting 
with two populations that interact, called (MP)-FSIRC. We 
prove the well-posedness of the proposed (MP)-FSIRC-
model and also present distinct simulated scenarios for the 
fractional derivative as well as for the sub-population sizes 
and disease prevalence at .  The numerical results 
show that the existence of immunological memory in both 
sub-populations (described by the fractional dynamics), in 
general, presents a favorable epidemiological situation, with 
smaller infection pecks and less cross-immunity. The most 
favorable epidemiological scenarios are those in which the 
disease-free sub-population at  has greater 
immunological memory, as discussed in Section IV. It turns 
out that any vaccination campaign should start, if possible, 
with the sub-population that is disease-free. 

The theoretical questions of existence and stability for 
stationary points as well as simulated scenarios with other 
choices for the model parameters and fractional order 
derivatives will be addressed by the authors in future 
contributions. 
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