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Abstract— Due to their supporting function, beams are one of 
the main elements in structural projects. With the intense 
technological development in the field of nanotechnology, beams at 
micro- and nanoscales have become objects of intense study and 
research interest, see for example [8]. In this approach, we analyze 
numerically the inverse problem of identifying the stiffness 
coefficient in micro-nano-beams as a function that implicitly 
depends on the fractal media map for the continuum from strain 
measurements. Such a problem is unstable with respect to noise in 
strain measurements, which is inherent in practical problems. We 
introduce the equations that compose Landweber's iterative 
regularization method as a strategy to obtain a stable and convergent 
approximate solution with respect to the noise level in the 
measurements. We show some scenarios with simulated data for 
identifying the stiffness coefficient for different noise levels in 
measurements and for different coefficient of transformation of 
fractal medium. The results found numerically show that 
Landweber's method is a regularization strategy for the problem of 
identifying the stiffness coefficient in micro/nano-beams. 

Keywords—micro/nano-beams, inverse problem, fractal media, 
Landweber’s method 

I. INTRODUCTION 
Every day, we are surrounded by beams. They are the 

fundamental structural elements that carry vertical loads. 
Though beams are traditionally used to describe building or 
civil engineering, beams can be found in all existing 
structures as structural elements, including machine frames, 
bones, carbon nanotubes, molecular chains, and other 
mechanical or structural systems. In these structures, the size-
scale is paramount for a precise description of the mechanical 
properties of the beam [9]. 

In continuum mechanics, the analysis of movements and 
deformations is determined by the hypothesis that the medium 
is composed of matter in a homogeneous way. This theory 
ignores the existence of voids formed when molecules and 
atoms are not evenly distributed. The question that arises in 
micro- and nanoscale analysis is whether conventional models 
of continuum mechanics, such as Euler-Bernoulli and 
Timoshenko, may not be appropriate, given that such 
approaches do not take into account the scale factor in their 
models, see for example [9]. To address the scale issue, some 
non-classical continuum theories, as well as theories 
incorporating non-integer order derivatives in the [6, 7, 8, 9] 
models, have been investigated. Models with fractional 

dynamics have been shown to be more suitable for describing 
the properties of various real materials, e.g. [6], and thus have 
aroused the interest of engineering research. 

In [7] an overview of the modeling of fractal media 
through the theory of continuous mechanics is presented using 
the ideas proposed in [8]. This theory consists of describing 
the laws of equilibrium for fractal media using fractional 
integrals. Using a map from the fractal to the continuous 
medium, those fractional integrals are rewritten as integrals in 
conventional Euclidean space. The interesting thing about this 
approach is that the essential condition of continuum 
mechanics, the separation of scales, can be replaced by the use 
of continuum field equations. In Section II, we present the 
deduction of the Euler-Bernoulli equation for beams in fractal 
media, using the techniques proposed in [8]. We also show 
that the analyzed model has a unique solution 𝑢𝑢(𝑥𝑥), which is 
known in the literature as the direct problem for the Euler-
Bernoulli beam model in fractal media. 

The main contribution of this work is the numerical 
investigation of an “inverse problem” for the  Euler-Bernoulli 
beam model in fractal media. Indeed, the stable identification 
of the stiffness parameter 𝑎𝑎(𝑥𝑥)  associated with the Euler-
Bernoulli equation in fractal media, as described in Section II, 
from indirect measurements of the nano (micro)-beam 
deflection of 𝑢𝑢(𝑥𝑥).Given that measurements of the nano 
(micro)-beam deflection 𝑢𝑢(𝑥𝑥) are subject to errors and that 
the inverse problems are generally ill-posed in the Hadamard 
sense [2, 3], the issue of instability in the identification of the 
stiffness parameter 𝑎𝑎(𝑥𝑥) due to noise measurements of the 
beam deflection 𝑢𝑢(𝑥𝑥)  necessitates the use of some 
regularization strategy. In this contribution, we use the 
Landweber iterative method (see Section III), which will be 
used to numerically demonstrate the stability of the 
approximations for the identification coefficient 𝑎𝑎(𝑥𝑥)  in 
Section IV. In Section IV, we will present several numerical 
tests with varying levels of noise in the measurements. The 
presented scenarios demonstrated numerically that the 
Landweber iteration obtains stable approximate solutions for 
the coefficient 𝑎𝑎(𝑥𝑥)  under different fractal medium 
properties. 

II. EULER-BERNOULLI EQUATION IN FRACTAL MEDIA  
In general, a fractal medium cannot be considered as a 

continuous medium, as there are points and domains that are 
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not filled by particles of the medium. These domains can be 
called porous. Thus, the application of continuum theory to 
fractal media is not appropriate. To get around this difficulty, 
[8] proposed the use of fractional integrals to represent the 
mass of a region  in three-dimensional Euclidean space  
as being: 

  (1) 

with 

  (2) 

where 𝑅𝑅  is the length scale measurement,  is the fractal 
dimension of mass, and  is Euler's Gamma function. The 
coefficient 𝑐𝑐3 establishes the transformation between fractal 
and continuous media. The term  is the infinitesimal 
element of volume in fractal space, and  is the infinitesimal 
element of volume in . However, the proposal of [8] implies 
that the measure of the fractal dimension in each of the 
directions of the medium must be the same. To contour this 
limitation, [8] proposed an approach in which the measure of 
length in relation to each coordinate of the medium is given 
by: 

  (3) 

where 𝜌𝜌(𝑥𝑥)  represents mass density and 𝛼𝛼𝑘𝑘 a fractal 
dimension in the direction 𝑥𝑥𝑘𝑘. 

Assuming that 𝑐𝑐1
(𝑘𝑘)  is given by the modified Riemann-

Liouville integral, that is: 

  (4) 

where 𝑙𝑙𝑘𝑘  is the total length along 𝑥𝑥𝑘𝑘  and 𝑙𝑙𝑘𝑘0  is the 
characteristic length in the given direction, [8] showed that it 
is possible to reproduce almost all the known results of the 
mechanical theory of the continuum, in addition to allowing 
to represent more heterogeneous media. 

A. One-dimensional fractal medium: the Euler-Bernoulli 
equation 
Assume that we are in Euclidean dimension 1, in the 𝑥𝑥 

direction. Let dimension 𝐷𝐷 < 1  be the dimension of the 
fractal structure in which we are immersed, in the direction 𝑥𝑥. 
Then it follows from (3) that the element 𝑑𝑑𝑥𝑥 must be replaced 
by: 

  (5) 

Rewriting the balance equations in variational form, with 
the measure given by (5) and using the generalized Green-
Gauss Theorem, see [8], it follows that the Euler-Bernoulli 
equation in fractal means is given by: 

  (6) 

wherein 

  (7) 

is the bending moment with 𝑎𝑎(𝑥𝑥) = 𝐸𝐸(𝑥𝑥)𝐼𝐼(𝑥𝑥) the stiffness 
coefficient. In (6) and (7), the operator  is the 
Laplacian operator for fractal media, given by: 

  (8) 

where 𝑐𝑐 = 𝑐𝑐(𝑥𝑥) = 𝑐𝑐1(𝑥𝑥)  is the transformation coefficient 
between the fractal medium and the continuous medium. 

In this work, we will consider (7) with the following 
boundary conditions: 

  (9) 

corresponding to a cantilever beam. 

B. The inverse problem as an equation of operators 
To formulate the inverse problem that we are interested in 

this work, we first need to formulate some hypotheses for 
which problem (7) with boundary conditions (9), has a single 
solution, that is, the direct problem is well posed. 

A1: The stiffness coefficient 𝑎𝑎 = 𝑎𝑎(𝑥𝑥) and the transformation 
coefficient 𝑐𝑐 = 𝑐𝑐(𝑥𝑥) are measurable functions on [0, 𝐿𝐿] that 
satisfy the condition �̅�𝑎 ≥ 𝑎𝑎(𝑥𝑥) ≥ 𝑎𝑎 > 0  and 𝑐𝑐 ≥ 𝑐𝑐(𝑥𝑥) ≥
𝑐𝑐 > 0 for known constants 𝑎𝑎, 𝑎𝑎, 𝑐𝑐, 𝑐𝑐. The set of coefficients 
satisfying the hypothesis A1 will be denoted by  in this 
manuscript and referred to as the admissible set. 

A1’: The stiffness coefficient and the transformation 
coefficient besides satisfying A1 have uniformly bounded 
||𝑎𝑎′||, ||𝑐𝑐′||,  that is, the coefficients belong to the set 𝐴𝐴 =
{𝑎𝑎, 𝑐𝑐 ∈ 𝐿𝐿∞|𝜆𝜆1 ≤ 𝑎𝑎, 𝑐𝑐 ≤ 𝜆𝜆2, ||𝑎𝑎′, 𝑐𝑐′|| ≤ 𝑄𝑄}, where  
denotes the norm 𝐿𝐿2(0, 𝐿𝐿) with 0 < 𝜆𝜆1 ≤ 𝜆𝜆2 < ∞ and 𝑄𝑄 > 0. 
A2: The bending moment 𝑀𝑀(𝑥𝑥) ∈ 𝐶𝐶[0, 𝐿𝐿]. 

Consider the vector space 

 

                                             (10)  

with the inner product below 

  (11) 

It follows from the Assumption A1 that the space of 
functions ℒ2[0, 𝐿𝐿] with the norm induced by the inner product 
(11) is a space of Hilbert. Furthermore, the space ℋ0

1[0, 𝐿𝐿]  
will denotate the Sobolev space of all functions in, 𝑔𝑔 ∈
ℒ2[0, 𝐿𝐿]  with the derivatives in the weak sence, 𝑔𝑔′  also 
belongs to ℒ2[0, 𝐿𝐿] , and satisfies 𝑔𝑔(0) = 𝑔𝑔(𝐿𝐿) = 𝑔𝑔′(0) =
𝑔𝑔′(𝐿𝐿) = 0. See, for example [1]. 

In order to prove existence and uniqueness for a solution 
of the problem (7) with conditions in (9), we use the theory of 
weak solution as follows. First, we consider as a weak solution 
to problem (7) any function 𝑢𝑢 ∈ ℋ0

1[0, 𝐿𝐿] such that 

  (12) 

for any test function 𝜙𝜙 ∈ ℋ0
1[0, 𝐿𝐿]. 

Lemma 1: Assume that the assumptions A1 and A2 are 
satisfied. If there is 𝑢𝑢 satisfying the problem (7) and (9), then 
𝑢𝑢 is a weak solution to the problem (12). Conversely, if 𝑢𝑢 is a 
weak solution to (12), then 𝑢𝑢 satisfies (7) almost always. 
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Proof: It follows from Hypothesis A1 and A2 that 𝑐𝑐. 𝑀𝑀/𝑎𝑎 ∈
ℒ2[0, 𝐿𝐿] . Therefore, from (7) and conditions (9), 𝑢𝑢 ∈
ℋ0

2[0, 𝐿𝐿] and satisfy (12) (see the Green’s identities in [1]). 

Reciprocally, if 𝑢𝑢 ∈ ℋ0
1[0, 𝐿𝐿] is a weak solution to (7), it is, 

satisfies (12), then boundary conditions (9) for the problem in 
(7) are satisfied. Furthermore, as 𝑢𝑢  satisfied (12) by 
assumption, we have, after an integration by parts, that 

 (13) 

Therefore, it follows from the density of 𝐶𝐶0
∞[0, 𝐿𝐿] in ℋ0

1[0, 𝐿𝐿] 
that −𝑎𝑎∇𝑥𝑥

𝐷𝐷∇𝑥𝑥
𝐷𝐷𝑢𝑢 = 𝑀𝑀 , almost everywhere. Hence, by the 

Hahn-Banach theorem (see [1]) the result for (13) can be 
extended to ℋ0

1[0, 𝐿𝐿]. 
 Given the Lemma 1, it is possible to prove through the Lax 
Milgram’s Theorem [1] the existence of  a unique solution 𝑢𝑢 ∈
ℋ0

1[0, 𝐿𝐿] that satisfies (12). Indeed, notice that 𝑢𝑢 is a weak 
solution of (7) if and only if 𝑢𝑢 satisfies 

        (14) 

where  is the bilinear form 
defined as 

  (15) 

and  is the linear functional given by 

  (16) 

Theorem 1: Assuming that the hypotheses A1 and A2 are 
satisfied, there is a unique solution to (12). As a consequence 
of the Lemma 1, there is a unique weak solution to (7). 

Sketch of Proof: Following the same ideas in [4], it is possible 
to prove that the linear functional defined in (16) is continuous 
and furthermore that the bilinear form defined in (15) is 
continuous and coercive in ℋ0

1[0, 𝐿𝐿]. Therefore, it follows 
from the Lax-Milgram Theorem [1, Corollary 5.8] the 
existence of a unique function 𝑢𝑢 ∈ ℋ0

1[0, 𝐿𝐿] satisfying (12). 

As a result of Theorem 1, it follows that, for any given 
function 𝑐𝑐(𝑥𝑥), satisfying Assumption A1, the operator 

 
  (17) 

where 𝑢𝑢(𝑎𝑎) = 𝑢𝑢𝑐𝑐(𝑥𝑥, 𝑎𝑎(𝑥𝑥)) is the unique solution of (7), is 
well defined. 𝐹𝐹𝑐𝑐(𝑥𝑥) is called the forward operator in the theory 
of inverse problems, see for example [2, 3]. 

C. The inverse problem   
Assume that the functions 𝑀𝑀(𝑥𝑥) and 𝑐𝑐(𝑥𝑥) are known. The 

inverse problem that we are interested in this work deals with 
the identification of the stiffness coefficient 𝑎𝑎(𝑥𝑥)  from 
measurements 𝑢𝑢𝛿𝛿(𝑥𝑥), with noise level , satisfying: 

  (18) 

of the deflection 𝑢𝑢(𝑥𝑥) = 𝑢𝑢𝑐𝑐(𝑥𝑥) solution of (7) with boundary 
conditions (9). Equivalently, determine 𝑎𝑎(𝑥𝑥) in the operator 
equation (17), from the measures 𝑢𝑢𝛿𝛿(𝑥𝑥) satisfying (18). 

Inverse problems, in general, do not have the property of 
continuous dependence of the measures 𝑢𝑢𝛿𝛿. This implies that 
small perturbations of magnitude 𝛿𝛿 in the measurements can 

generate large perturbations in obtaining the solution of the 
inverse problem of interest, e.g., [2, 3]. As a result, obtaining 
stable and convergent solutions with respect to the noise level 
𝛿𝛿 requires the use of regularization methods. See for example 
[2, 3, 4, 5]. 

The problem of identifying the stiffness coefficient 𝑎𝑎(𝑥𝑥) 
in a beam does not have the property of continuous 
dependence of the measures 𝑢𝑢𝛿𝛿, as demonstrated in the case 
of 𝑐𝑐(𝑥𝑥) = 1 in [4, 5]. As a result, the stable identification of 
the stiffness coefficient 𝑎𝑎(𝑥𝑥) , requires some regularization 
methods [2, 3]. In this contribution, we will use an iterative 
regularization method called the Landweber method [2] to 
recover the parameter 𝑎𝑎(𝑥𝑥) in a stable and convergent manner 
with respect to the noise level 𝛿𝛿. In other words, we will show 
numerically that the Landweber iteration (see equation (19)) 
together with a stop criterion, called the discrepancy principle 
(see equation (20)), generates approximate stiffness 
coefficients 𝑎𝑎𝑘𝑘

𝛿𝛿 , for 𝑎𝑎(𝑥𝑥) , with values that are stable and 
convergent to 𝑎𝑎(𝑥𝑥), as a function of the noise level in the data 
𝛿𝛿. The iterative algorithm is presented in Section III, while the 
numerically simulated scenarios for the recovery of the 
stiffness coefficient 𝑎𝑎(𝑥𝑥) is presented in Section IV. 

III. LANDWEBER’S ITERATIVE METHOD 
The Landweber iteration (Landweber's iterative method) 

for the identification of the coefficient 𝑎𝑎(𝑥𝑥) in (7), is given by 

  (19) 

where  is a relaxation parameter. 𝐹𝐹𝑐𝑐(𝑥𝑥)
′ (𝑎𝑎𝑘𝑘

𝛿𝛿)∗
 denotes the 

adjunct of the Fréchet derivative of the parameter-to-
measurement operator 𝐹𝐹𝑐𝑐(𝑥𝑥)(𝑎𝑎) , defined in (7).  𝑎𝑎0  is the 
initial guess of the iteration (14), that shall be chosen properly. 

Because the data contains 𝛿𝛿  noise, the iterative method 
must be combined with a stop rule, as mentioned in [2, 3, 4, 
5]. In this work, we use the discrepancy principle's stopping 
criterion, which states that (19) must be stopped at the first 
step 𝑘𝑘∗ that satisfies 

  (20) 

for some 𝜏𝜏 > 1. Thus, the number of iterations 𝑘𝑘∗ determines 
the stopping rule of the method. 

The numerical implementation to obtain the coefficient 
𝑎𝑎(𝑥𝑥) iteratively according to (19) is given by the following 
algorithm: 

(1) Choose an initial value for 𝑎𝑎0 ∈ 𝐿𝐿∞ and 𝑐𝑐(𝑥𝑥) satisfying 
Assumptions A1 and A1', respectively. Choose also the 
parameter values . 

(2) Add the uniformly distributed random variable 𝑧𝑧(𝑥𝑥) ∈
[0,1] to the solution 𝑢𝑢(𝑥𝑥) of the forward problem to generate 
the noise data 𝑢𝑢𝛿𝛿 = 𝑢𝑢(𝑥𝑥) + 𝛿𝛿𝑧𝑧(𝑥𝑥) , satisfying 

. 

(3) As long as the iteration (19) is such that 𝑎𝑎𝑘𝑘
𝛿𝛿, for , 

where  denotes the iteration index that satisfies the 
discrepancy principle, do the following steps: 

(4) Solve the problem 

  
with the initial conditions 
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. 

(5) Evaluate the residue 

  
wherein 𝐹𝐹𝑐𝑐(𝑥𝑥)(𝑎𝑎𝑘𝑘

𝛿𝛿)  is solution of differential equation 
calculated in Step (4). 

(6) To calculate 𝐹𝐹𝑐𝑐(𝑥𝑥)
′ (𝑎𝑎𝑘𝑘

𝛿𝛿)∗𝑟𝑟𝑘𝑘, firstly, 

(6.1) Solve the differential equation 

  
with finals conditions 

. 

(6.2) Then, find the adjunct 

  
solving 

  
wherein  is solution of equation obtained in Step (6.1). 

(7) Update 𝑎𝑎𝑘𝑘+1
𝛿𝛿  wherein 𝑎𝑎𝑘𝑘+1

𝛿𝛿 =  𝑎𝑎𝑘𝑘
𝛿𝛿 − 𝛾𝛾𝛾𝛾𝐷𝐷𝑘𝑘. 

(8) Go back to Step (3) while the discrepancy principle given 
by (20) is not reached. 

(9) Otherwise, the regularized solution is 𝑎𝑎𝑘𝑘∗𝛿𝛿 , where  is 
determined by the discrepancy principle (20). 

It is important to mention that, for the calculations of 
𝐹𝐹𝑐𝑐(𝑥𝑥)

′ (𝑎𝑎𝑘𝑘
𝛿𝛿)∗

 in Step (6) in the algorithm, it is necessary to 
define an auxiliary operator given by 

 
                         (21) 

for 𝑎𝑎, 𝑐𝑐 ∈ 𝛾𝛾𝐴𝐴. It is straightforward to show that the operator 
defined in (21) is linear, bounded and bijective.  Therefore, it 
also has a linear and bounded inverse 𝛾𝛾−1(𝑎𝑎).  The adjunct 
operator of 𝛾𝛾(𝑎𝑎)  is such that 𝛾𝛾∗(𝑎𝑎)𝑣𝑣 = −(𝑐𝑐−1(𝑎𝑎𝑣𝑣)′)′ , 
corresponding the Step (6.1) in the algorithm. Because it is 
also linear and bounded, its inverse is given by 

  (22) 

where 𝑣𝑣 is the unique solution of the . 

The equations obtained in Step (6) of the above algorithm are 
calculated by taking the Fréchet derivative of the operator 

 defined in (12) and integrating by parts with respect 
to the inner product given by (11). Therefore, we obtain 

  (23) 

with  as (22) applied to residue . 
Hence, the Steps (6.1) and (6.2) of the algorithm are 
equivalent to (23). 

IV. NUMERICAL EXAMPLES 
In this section, we use the Landweber regularization 

method given by (19) to identify the beam stiffness coefficient 
𝑎𝑎(𝑥𝑥), in the fractal media Euler-Bernoulli equation modeled 

by (7) and (9). In all the simulations presented below, we use 
𝑥𝑥 ∈ [0, 1] , and the bending moment 𝑀𝑀(𝑥𝑥) = 𝑥𝑥2

2 − 𝑥𝑥 + 1
2 . 

Also, we use 𝑎𝑎0 = 0.75 as the initial guess of the Landweber 
iteration method (19). The finite difference method was used 
to obtain the numerical solution 𝑢𝑢 for (7) at points 𝑥𝑥𝑖𝑖 = 𝑖𝑖/𝑛𝑛 
where 𝑖𝑖 = 0, 1, 2, … , 𝑛𝑛 for 𝑛𝑛 = 50 points for the simulated 
scenario of Example 1 and  𝑛𝑛 = 100  points for the other 
simulated scenarios. In all examples, the noisy data 𝑢𝑢𝛿𝛿  is 
generated by adding a random variable 𝑧𝑧(𝑥𝑥) ∈ [0, 1], evenly 
distributed, to the solution 𝑢𝑢(𝑥𝑥) of (7), such that  𝑢𝑢𝛿𝛿(𝑥𝑥) =
𝑢𝑢(𝑥𝑥) + 𝛿𝛿. 𝑧𝑧(𝑥𝑥), where 𝛿𝛿 is the noise level. 

The differential equations corresponding to Step (6) of the 
algorithm were solved using backward Euler's method to 
account for the final conditions. The steps of the algorithm 
resulting from the Landweber method, presented in Section 
III, were implemented in Python (version 3.8.5). 

Example 1: The simulated scenario corresponding to this first 
example consists in identifying the stiffness coefficient 
𝑎𝑎∗(𝑥𝑥) = 1 in the fractal medium Euler-Bernoulli beam where 
the fractal medium transformation coefficient is  𝑐𝑐(𝑥𝑥) = 2𝑥𝑥 +
1. 

Fig. 1 compares the coefficients 𝑎𝑎(𝑥𝑥) and 𝑎𝑎𝑘𝑘∗𝛿𝛿 (𝑥𝑥) recovered 
by the Landweber method given by (14) for noise levels 

 and , respectively. The 
simulations were performed on a mesh with 𝑛𝑛 = 100 points. 
The numerical results shown in Fig. 1 demonstrate that 
Landweber's iterative method produces stably approximate 
solutions 𝑎𝑎𝑘𝑘∗𝛿𝛿 (𝑥𝑥) for the stiffness coefficient 𝑎𝑎∗(𝑥𝑥) = 1, as a 
function of the noise level . 

 

Fig. 1. Identification of the stiffness coefficient 𝑎𝑎∗(𝑥𝑥)  corresponding to  
Example 1 

 In the simulations presented in Fig. 1, the reconstructed 
coefficient 𝑎𝑎𝑘𝑘∗𝛿𝛿 (𝑥𝑥)  is obtained by using the discrepancy 
principle, for with the iteration is stopped after 𝑘𝑘∗ = 143 
iterations for the noise level . While, the iteration 
is stopped after 𝑘𝑘∗ = 92 and 𝑘𝑘∗ = 77, for the noise level of  

 and , respectively. 

 In the following simulated scenarios, we will consider the 
identification of a non-constant stiffness coefficient 𝑎𝑎(𝑥𝑥), as 
a way of evaluating the performance of Landweber's iterative 
method in more unfavorable scenarios. 

Example 2:  The simulated scenario of this example 
corresponds to the identification of the stiffness coefficient 
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, from noise measurements of the fractal Euler-
Bernoulli beam equation (6), where the fractionality of the 
medium is given by 𝑐𝑐(𝑥𝑥) = 2𝑥𝑥 + 1. 

The results for noise levels of 𝛿𝛿 = 0.0001, 𝛿𝛿 = 0.001 and 
𝛿𝛿 = 0.01  are shown in Fig. 2. The mesh was chosen 
uniformly with 𝑛𝑛 = 50  points. This figure show that the 
Landweber iteration with the stopping criterion given by the 
discrepancy principle in (20) produced stable and satisfactory 
approximations 𝑎𝑎𝑘𝑘∗𝛿𝛿  for the non-constant coefficient 𝑎𝑎∗(𝑥𝑥). 

 
Fig. 2. Identification of the stiffness coefficient 𝑎𝑎∗(𝑥𝑥) for Example 2 

The principle of discrepancy given in (20) is reached for 
the scenarios of this example with ,    and 

, for the simulated noise levels for ,  
, and , respectively. 

In the simulated scenarios that follow, we present 
approximate solutions for recovering the coefficient 𝑎𝑎∗(𝑥𝑥) as 
in Examples 1 and 2, where the fractionality of the medium 
𝑐𝑐(𝑥𝑥) is distinct. 

Example 3: The simulated scenario of this example 
corresponds to the Euler-Bernoulli fractional media beam, 
where the coefficient of fractionality is given by 𝑐𝑐(𝑥𝑥) = 𝑥𝑥2 +
1 . The simulations for  a noise level of 𝛿𝛿 = 0.0001, 𝛿𝛿 =
0.001 and 𝛿𝛿 = 0.01, are presented in order to recover the 
coefficient 𝑎𝑎∗(𝑥𝑥) = 1, in Fig. 3. 

Fig. 3 shows the coefficient 𝑎𝑎(𝑥𝑥)  recovered by the 
Landweber method given in (19) for different noise levels 𝛿𝛿 =
0.0001, 𝛿𝛿 = 0.001  and 𝛿𝛿 = 0.01 . The simulation was 
performed on a mesh with 𝑛𝑛 = 50 points. 

 
Fig. 3. Identification of the constant stiffness coefficient for Example 3 

In Fig. 3, the reconstructed coefficients 𝑎𝑎𝑘𝑘∗𝛿𝛿 (𝑥𝑥)  for 
different noise levels 𝛿𝛿 = 0.0001, 𝛿𝛿 = 0.001 and 𝛿𝛿 = 0.01  
satisfied the discrepancy principle, respectively, with 𝑘𝑘∗ =
102, 𝑘𝑘∗ = 97 and 𝑘𝑘∗ = 89. 

Example 4: The simulated scenario of this example 
corresponds to the Euler-Bernoulli fractional media beam, 
where the coefficient of fractionality is given by  𝑐𝑐(𝑥𝑥) = 𝑥𝑥2 +
1. The simulations for noise level 𝛿𝛿 = 0.0001, 𝛿𝛿 = 0.001 
and 𝛿𝛿 = 0.01  are presented in Fig. 4 in order to recover the 

coefficient  . 

Fig. 4 shows the coefficient 𝑎𝑎𝑘𝑘∗𝛿𝛿 (𝑥𝑥)  recovered by the 
Landweber method given in (19) for different noise levels 𝛿𝛿 =
0.0001, 𝛿𝛿 = 0.001  and 𝛿𝛿 = 0.01,  respectively. The 
simulation was performed on a mesh with 𝑛𝑛 = 50 points. 

The principle of discrepancy given in (20) is reached of 
this example for the simulated noise levels, where 𝑘𝑘∗ = 132 
for 𝛿𝛿 = 0.0001, 𝑘𝑘∗ = 117, for 𝛿𝛿 = 0.001 and 𝑘𝑘∗ = 105 for 
𝛿𝛿 = 0.01. 

 
Fig. 4. Identification of the stiffness coefficient 𝑎𝑎∗(𝑥𝑥) for Example 4 

The numerical results shown in Examples 1, 2, 3, and 4 
demonstrate that Landweber's iterative method terminated 
with the discrepancy principle produces stably approximate 
solutions , for the simulated scenarios with the stiffness 
coefficient  and  and for different 
proposed noise levels with distinct fractionality 
transformation coefficient 𝑐𝑐(𝑥𝑥). It is worth noting that the 
discrepancy principle in Examples 3 and 4 is stretched after 
more iterations than previous examples, which is possible due 
to the polynomial degree of the coefficient 𝑐𝑐(𝑥𝑥). It will be 
investigated in future contributions. 

V.  CONCLUSIONS 
In this paper, we present a fractal mechanics-based version 

of the Euler-Bernoulli equation for beams at micro- and 
nanoscales, as well as the inclusion of the parameter 𝑐𝑐(𝑥𝑥) 
responsible for characterization of the fractionality of scales. 
We investigated the inverse problem of identifying the Euler-
Bernoulli equation coefficient 𝑎𝑎(𝑥𝑥) from measures of noisy 
data corresponding to the bending of a fractal media beam. As 
this problem is ill-posed in the Hadamard sense, we 
numerically analyze the Landweber iteration method as a 
regularization, in order to obtain stable and convergent 
solutions for the parameter of interest in terms of the noise 
level. We present some numerical examples for different noise 
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levels in the recovery of constant and non-constant stiffness 
coefficients 𝑎𝑎(𝑥𝑥). In addition, we performed tests with two 
different functions for the fractal parameter 𝑐𝑐(𝑥𝑥), evaluating 
the performance of the method in these cases as well. In fact, 
the numerical results presented showed that the proposed 
iterative method satisfactorily recovered the stiffness 
coefficient, reaching the stopping criterion with a similar 
number of iterations in the different tests, even when 
simulated for different parameters 𝑐𝑐(𝑥𝑥). 
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