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Abstract — Energy consumption in the world is based on two 
types of sources: fossil fuels and renewable energy. In this case, 
bioethanol presents itself as an alternative resource to fossil fuels, 
whose production can occur through specific processes called 
alcoholic fermentation. In parallel, the growing demand for energy 
has resulted in the development of even more efficient systems and 
technologies. In this work, mathematical modeling and simulation 
was performed to represent the kinetics of alcoholic fermentation 
in a fed-batch bioreactor. The modeling was developed taking into 
account the microbial inhibition caused by the presence of excess 
substrate and product through the Tosetto and Hoppe-Hansford 
models. In the simulation, Bayesian statistics was used as a tool to 
estimate the kinetic parameters and the state variables of the 
bioprocess. The estimates were obtained through the use of a 
particle filter proposed by Liu and West, with 500 particles and 
experimental measurements from the literature, whose approach 
presented 99% accuracy and proved to be effective for describing 
alcoholic fermentation. 

Keywords— particle filter, bioreactor, kinetic parameters, 
alcoholic fermentation, mathematical modeling 

I. INTRODUCTION  
Bioethanol is a predominant ethanol strand derived from 

agricultural materials specifically carbohydrates, such as 
starch (corn grain) and sucrose (sugarcane), and 
lignocellulosic biomass. Furthermore, the disposal of 
feedstock in bioprocesses is a characteristic of bioethanol 
production [1]. 

By definition, bioprocesses makes the use of microbial, 
animal and plant cells, and cellular components such as 
enzymes. Common or innovative products can be originated 
and harmful waste can be disposed of through by this way. 
Bioprocessing is an essential part of industries such as food, 
chemicals, and pharmaceuticals [2]. 

Bioethanol is produced through a class of bioprocesses 
called fermentation processes. In turn, a fermentation system 

is composed of components such as the living cells of a 
microorganism (or biomass), the products of metabolism (or 
metabolites) and nutrients (or substrates) that are arranged in 
the fermentation medium [3]. 

These processes differ in the form of operation, such as 
the mode of substrate addition, product withdrawal, etc. In 
general, the operation regime of the process is divided into: 
discontinuous (batch), fed discontinuous (fed-batch) and 
continuous [4]. 

In processes involving alcoholic fermentation, fed-batch 
operation is used in about 75% of Brazilian distilleries, one 
of the main producing sources in the world, while the 
remaining 25% operate in continuous mode, using mainly 
Saccharomyces cerevisiae yeast as the ethanol-producing 
microorganism and agricultural materials as substrate. The 
operation is conducted at temperatures between 32 and 35 
°C. The characteristics of the feed flow, which can last from 
4 to 6 hours, are important for the maintenance of the process 
[5].  

The fed-batch alcoholic fermentation consists of an initial 
stage where the process is discontinuous fed followed by 
another stage entirely of discontinuous process. The 
operation regime of the first stage starts with the feeding of a 
yeast suspension, called inoculum, occupying about 30% of 
the usable volume of the fermentation vessel, called 
bioreactor or fermenter. Then, the vessel receives the gradual 
addition of must, usually a liquid solution consisting of 
sugarcane juice or molasses diluted with sugarcane juice or 
water. Afterwards, the process is sequenced in batches until 
the total consumption of substrate [6]. 

Studying ways to optimize the fermentation process in 
order to obtain the maximum yield product is not an easy 
task. This fact is mainly due to the difficulty in obtaining 
measurements of the variables that are important in 
monitoring and controlling the process. To get around these 
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difficulties, an alternative is to perform indirect 
measurements through appropriate mathematical models that 
describe the dynamic behavior of fermentation, including 
taking into account the action of chemical, physical and 
biological phenomena [7, 8]. In turn, the kinetics of the 
fermentative process consists primarily in the analysis of the 
evolution of the concentration values of one or more 
components of the system, as a function of fermentation time 
[3]. 

In this context, the application of the particle filter 
technique with the algorithm of Liu and West (2001) will be 
evaluated to perform the estimates of the state variables 
(substrate concentration, cell, product and volume) and the 
parameters of the alcoholic fermentation process, considering 
the already known mathematical modeling of the process [9]. 

II. METHODOLOGY 

A. Mathematical modeling of alcoholic fermentation 
The mathematical modeling considered for this study is 

phenomenological, unstructured, non-segregated modeling. 
Phenomenological models consist of a set of mathematical 
relationships, such as mass balance or conservation 
equations, among the variables of interest in the system 
under study. The unstructured aspect is observable when the 
cellular material is represented by a single variable, usually 
cell mass, without considering variations of intracellular 
components. While the non-segregated characteristic 
concerns the cell population considered homogeneous, that 
is, all the cells present the same behavior [4]. 

 Due to mass conservation balances, phenomenological 
mathematical models of fermentative processes can be 
constituted by Ordinary Differential Equations (ODEs) 
suitable for representing the dynamic of homogeneous 
systems [10], as presented in (1–4). 

 dV = F
dt

 

 X
X X

dC F C
dt V

    
 

 

  
/

1S
X X SF S

X S

dC FC C C
dt Y V

     

 /

/

P SP
X X P

X S

YdC FC C
dt Y V

    

 In the ODEs system, V is the volume of medium in the 
bioreactor in L, CX is the cell concentration in g.L-1, CP is 
the product concentration in g.L-1, CSF is the substrate 
concentration in g.L-1, CSF is the substrate concentration at 
feed in g.L-1, F is the substrate flow rate in L.h-1, µX is the 
specific cell growth velocity in h-1, YP/S is the product yield 
relative to substrate in gCx.gCs

-1 and YX/S is the cell yield 
relative to substrate in gCp.gCs

-1

B. Modeling the specific speed of cell growth 
Originally, the modeling of µX relies on basic theories of 

biochemistry. The concept of enzyme kinetics is, by analogy, 
extended to the microorganism, since it contains a 
considerable number of enzymes that catalyze the reactions 
of its metabolism. Thus, it is also assumed that the equations 
describing the inhibition mechanisms (competitive, 
noncompetitive, mixed, and acompetitive inhibition) of these 
agents on a single pure enzyme, are similarly manifested in 
the microorganism [11]. However, the traditional 
classification of models for the µX parameter is based on the 
inhibitory agent and can be divided into five groups: those 
free of inhibition; those that consider inhibition by the 
substrate, product, or even by the cells themselves; and 
hybrids that unite the previous inhibition models; as 
presented in Table I adapted from [1]. The kinetic models for 
µX evaluated in this work are by Tosetto (2002) [12] and 
Hoppe–Hansford (1982) [13]. 

Tosetto's model, shown in (15), also propagated as the 
modified Ghose (1979) model or Andrews/Levenspiel 
model, is characterized by considering exponential 
inhibition by substrate and linear inhibition by product [14]. 
The Hoppe-Hansford model, shown in (12), considers only 
linear inhibition by the product. 

C.  Bayesian Statistic 
Bayesian statistics is based on Bayes' theorem on three 

main steps: using accessible knowledge about a given 
parameter in a model through the a priori probability 
distribution; assigning the likelihood function using the 
parameter information available in the observed data; 
combining both the a priori probability distribution and the 
likelihood function into the form of the a posteriori 
probability distribution. The a posteriori probability 
distribution, as in (19), represents the updated knowledge 
[15]. 

      
 

|
|

Y P P
P Y  = 

Y
 




 

Equation (19) is in terms of P, which can represent 
unknown parameters and Y which can denote state variables. 
The function π(P) is the a priori probability density, 
expressing the information of  P prior to the measurement of 
Y; π(Y|P) is the likelihood function, expressing the observed 
probability density of Y knowing P; π(P|Y) is the a posteriori 
probability density function, i.e., the probability density of P 
given the prior information and the measured value of Y; 
π(Y) is a normalization constant [16–18]. 

      | |P Y  = α  Y P   P      

Equation (19) can also be represented by (20), since π(Y) 
represents a normalization constant. Thus, the a posteriori 
probability density function can be written as being 
proportional to the product of the likelihood function and 
the a priori probability density. 
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TABLE I.  KINETIC MODELS  FOR SPECIFIC SPEED OF CELL GROWTH

a. Kinetic parameters: KS is the saturation constant, KIS is the substrate inhibition constate,  Cpmáx is the product concentration when cell growth ceases, n is the power of the product inhibition term, 
u is adimensionless parameter of the model, v is a dimensionless parameter of the model, KIP is the product inhibition constant and m is a dimensionless parameter of the model. 

In possession of this, a specific strategy that makes it 
possible to obtain inference by simulation is through the use 
of Sequential Monte Carlo Methods (SMCs), commonly 
referred to as particle filters. It provides a computational 
approximation for the a posteriori distribution, which may be 
in terms of random samples (particles) and associated 
weights, being able to predict an unknown variable from a 
data set [19, 20]. From this perspective, Bayesian filters of 
the particle filter class are probabilistic methods that rely on 
a recursive algorithm for estimating and updating dynamic 

states of a system from models, knowledge bases, and others 
[21]. 

Particle filter methods are used in order to produce 
sequential estimates of the desired dynamic variables. The 
sequential estimation is done through interleaved prediction 
and data update steps. This is accomplished in such a way 
that the error is minimized statistically. Particle filters are 
traditionally applied with the following algorithms: Sampling 
Importance Resampling (SIR), Auxiliary Sampling 
Importance Resampling (ASIR) and Liu and West [20]. 

Classification Author(s) Modela 

No Inhibition 

Monod (1942)  ,
S

X X max
S S

C
K + C

    

Moser (1958)  ,

u
S

X X max
S S

C
K + C

    

Contois (1959)  ,
S

X X max
S X S

C
K × C + C

    

Substrate inhibition 

Andrews (1968)  , 2X X max
S

S S
IS

CS
CK + C +
K

    

Wu (1988) 
 ,

S
X X max v

S
S S

IS

C
CK + C +
K

    

Product Inhibition 

Aiba – Shoda – Nagatani (1968)   
,

S IP P
X X max

S S

C K × Ce
K + C


    

Levenspiel (1980)  ,
max

pS
X X max

S S P

nCC
 1

K +C C
 

     
 

 

Hoppe – Hansford (1982)  ,
S IP

X X max
S S IP P

C K
K + C K +C

    

Cellular Inhibition Lee – Pollard – Coulman (1983)  ,
max

S X
X X máx

S S X

m
C C 1

K + C C
 

     
 

 

Hybrid Inhibition 

Ghose – Thyagi (1979)  , 2
max

pS
X X max

PS
S S

S

CC 1
CCK + C +

K

 
     

 
 

Tosetto  , 2
max

pS
X X max

PS
S S

S

nCC
1

CCK + C +
K

 
     

 
 

Levenspiel/Lee – Pollard – 
Coulman  ,

máx max

pS X
X X max

S S P X

n mCC C1 1
K + C C C

   
          

   
 

Andrews/Lee – Pollard – Coulman  , 2
max

S X
X X max

XS
S S

S

m
C C1

CCK +C +
K

 
     

 
 

Andrews/Lee – Pollard – 
Coulman/Levenspiel 

 , 2
max max

pS X
X X max

X PS
S S

S

m nCC C1 1
C CCK + C +

K

   
          

   
 
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In general, simulation methods based on Bayesian 
sequential analysis of dynamic models initially arise with the 
proposal to sample the state variables over time using fixed 
parameters. In such a case, particle "friction" situations are 
present in resampling-based methods and "weight 
degeneracy" situations are seen in reweighting–based 
methods. However, these occurrences are handled by 
formulating a synthetic method of generating new sample 
points for parameters by targeting "artificial evolution", in 
which the non-dependence of parameters with time is still 
considered [9]. 

Additionally, the phenomenon of degeneracy occurs 
because many particles have insignificant weights. More 
computational effort is required so that particles with small 
weights can be advanced in time in the same way as large 
particles. The problem can be minimized by increasing the 
number of particles, and more efficiently, the resampling 
technique can be applied in order to select the best particles. 
The SIR and ASIR algorithms contain resampling steps [9, 
20]. 

Although resampling reduces the effects of degeneracy 
this can lead to a loss of diversity and the resulting sample 
may contain a large amount of repeated particles, causing the 
sample to be impoverished. This is a serious situation in state 
evolution models with small noises. In this case, the 
"collapse", or "friction", of all particles into a single particle 
occurs, especially when there are small time intervals. The 
ASIR method is qualified to solve this problem [9, 20]. 

Still, Liu and West present an innovation to use the ASIR 
algorithm proposing to show how to estimate, besides the 
state variables, the parameters of the model. Similarly to the 
state variables, the parameters are updated, or evolved, at 
each time and this procedure is performed through a 
combination between the average for all particles and the 
parameter value for each particle [20]. 

In the Bayesian view, filter-based sequential simulation 
using an Auxiliary Particle Filter (APF) that incorporates 
state variables and parameters has excellent equivalence to 
Markov chain Monte Carlo (MCMC) analysis. Liu and West 
demonstrated this by applying and comparing them from a 
dynamic factor financial model, inherent in the banking 
industry, to obtain perspectives on a time scale beyond the 
data set. In this respect, the feasibility of sequential 
simulation-based filtering induced approximation errors that 
indicated a tendency to increase over time. In other words, in 
an analysis it would be convenient to restrict oneself to short 
time scales because observing a very long horizon increased 
the possibility of being unrealistic. As a solution, it was 
proposed to use a longer historical stretch of data and, 
mainly, it was suggested that methods should always be 
combined with some form of periodic recalibration based on 
off-line analysis [9]. 

D. Simulation of alcoholic fermentation 
The analysis of the experimental data aimed to evaluate 

the kinetic behavior of the state variables and parameters 
defined in (21–23). 

 [ , , , ]X S PX C C C V  

  / /, , , , ,Tosetto max S IP X S P SP F K K Y Y    

  / /, , , , , , ,
maxHoppe Hansford max S IS X S P S PP F K K Y Y n C    

The case study estimates of the state variables and 
parameters were designed using the mathematical modeling 
of the fermentation simultaneously with the data acquired 
from the experimental measurements of Borges (2008) [22]. 
More precisely, they were performed based on the fed-batch 
fermentation operation in three experimental conditions, 
named in this paper as FB1, FB2 and FB3. The design 
parameters and initial conditions are presented in Tables II 
and III, respectively. Where, t is the fermentation time and tF 
is the feeding time, both in hours (h). 

 The measurements of the state variables are in Table IV–
VI, and the already estimated parameter values are shown in 
Table VII. The values of the experimental measurements, 
obtained by using a temperature (T) of 32°C, of CX, CS, CP 
(g.L-1) and V (L) over time (h). In the experimental 
conditions, CX is the dry biomass of Saccharomyces 
cerevisiae yeast, CS is the sucrose concentration,, CP is the 
ethanol concentration and V is the verified volume in the 
bioreactor [22]. 

TABLE II.  DESIGN PARAMETER VALUES 

Datab CSF (g.L-1) t (h) tF (h) 

FB1 217 8 5.283 

FB2 241.4 10 5.217 

FB3 285 11 5.2 
b. Values obtained from [22]. 

TABLE III.  INITIAL VALUES OF THE STATE VARIABLES USED IN THE 
ALCOHOLIC FERMENTATION PROCESS 

Datac CX
 (g.L-1) CS

 (g.L-1) CP
 (g.L-1) V (L) 

FB1 88 0 35.17 1.5 

FB2 83 0 36.71 1.5 

FB3 83 0 36.78 1.5 
c. Values obtained from [22]. 

TABLE IV.  EXPERIMENTAL MEASUREMENTS FOR THE FED-BATCH      
PROCESS (FB1) WITH CSF  =  217 G.L-1 

t (h)d CX
 (g.L-1)d CS

 (g.L-1)d CP
 (g.L-1)d V (L)d 

0 88.0 0 35.17 1.500 

1 59.0 29.0 42.6 2.116 

2 46.6 34.0 47.8 2.820 

3 38.2 36.0 52.6 3.479 

4 33.1 39.0 55.0 4.139 

5.283 27.7 35.8 58.89 4.986 

6 28.7 19.85 68.0 4.986 

7 29.7 5.2 74.7 4.986 

8 29.7 0.894 77.6 4.986 
d. Values obtained from [22] 



65

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol X, Issue 2, July 2023 

TABLE V.  EXPERIMENTAL MEASUREMENTS FOR THE FED-BATCH 
PROCESS (FB2) WITH CSF  =  241,4 G.L-1

. 

t (h)e CX
 (g.L-1)e CS

 (g.L-1)e CP
 (g.L-1)e V (L)e 

0 83.0 0 36.71 1.500 

1 56.0 40.0 41.8 2.168 

2 44.1 53.0 47.8 2.837 

3 36.3 58.11 49.6 3.505 

4 31.0 56.0 51.7 4.174 

5.217 26.5 64.1 55.3 4.987 

6 26.8 40.0 60.4 4.987 

7 27.4 21.2 69.94 4.987 

8 27.5 8.0 78.2 4.987 

9 28.3 2.8 80.4 4.987 

10 28.4 0.899 81.2 4.987 
e. Values obtained from [22] 

 

 

TABLE VI.  EXPERIMENTAL MEASUREMENTS FOR THE FED-BATCH 
PROCESS (FB2) WITH CSF  =   285 G.L-1 

t (h)f CX
 (g.L-1)f CS

 (g.L-1)f CP
 (g.L-1)f V (L)f 

0 83 0 36.78 1.5 

1 54 51.8 43.3 2.17 

2 44 66.7 47.3 2.84 

3 36.6 80 49.3 3.51 

4 30.6 82 53.8 4.181 

5.2 26.3 88 53.82 4.985 

6 26.8 66 65.7 4.985 

7 27 44 70.77 4.985 

8 27.1 28.3 82.1 4.985 

9 27.7 18.4 85.8 4.985 

10 27.8 9.8 89.3 4.985 

11 28.1 4.57 91.5 4.985 
f. Values obtained from [22] 

TABLE VII.  VALUES OF THE YIELD COEFFICIENTS, GENERAL KINETIC 
PARAMETERS, AND KINETIC PARAMETERS FOR THE TOSSETTO AND HOPPE – 

HANSFORD MODELS 

Parameters Values 

Yield coefficientsg FB1 FB2 FB3 

YX/S 0.024 0.021 0.017 

YP/S 0.445 0.418 0.413 

Flow rateg FB1 FB2 FB3 

F 0.660 0.668 0.670 
General kinetic 

parametersg FB1 FB2 FB3 

µmax 
0.02686 0.02293 0.02701 

KS 
10.40 10.31 32.02 

Kinetic parameters 
for Tosseto modelg FB1 FB2 FB3 

KIS 
813.8 693.4 370.0 

CPmáx 
125.7 129.9 144.1 

N 0.1 0.1 0.2861 

Kinetic parameters 
for Hoppe–

Hansford modelh 
FB1 FB2 FB3 

KIP 200 200 200 
g. Values obtained from [22]. 

h. Abitrarily chosen value. 

 The deviation used for the experimental measurements 
was 1% from the maximum concentration value. The 
estimation results were presented in terms of the 99% 
confidence interval with 500 particles for Liu and West's 
algorithm. 

E. Statistical analysis 
The models were statistically analyzed with the 

coefficient of determination (R2), by which the simulation 
data of the state variables were compared with the 
experimental data set. 
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III. RESULTS 

A. Estimation of the state variables 

 

Fig. 1. Obtaining the volume variations (V) by applying the Liu and West filter. (a–c) Tosetto model for µX. (d–f) Hoppe–Hansford model for µX. 
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Fig. 2. Obtaining the variations of cell concentrations (CX) – Saccharomyces cerevisiae – by applying the Liu and West filter. (a–c) Tosetto model for µX. 
(d–f) Hoppe–Hansford model for µX.
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Fig. 3. Obtaining the variations of the concentrations of substrate (CS) – Sucrose – by applying the Liu and West filter. (a-c) Tosetto model for µX. (d–f) 
Hoppe–Hansford model for µX. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



69

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol X, Issue 2, July 2023 

 

Fig. 4. Obtaining the product concentration variations (CP) – Bioethanol – by applying the Liu and West filter. (a–c) Tosetto model for µX. (d–f) Hoppe–
Hansford model for µX.

The evolution of the system volume is seen in Fig. 1, 
where a linear profile is observed during the process of 
feeding the medium, characteristic of the constant feed flow 
rate. The total volume becomes constant when the substrate 
feeding is interrupted. 

In Fig. 2, we can see the immediate effects of the 
substrate-feeding step where initially there is a decrease in 
cell concentration due to the increase in the volume of the 
medium and the subsequent stability caused by reaching a 
constant system volume. 

 The results for substrate concentration are shown in 
Fig.3. It is verified that the concentration presents an increase 
until the time of about 5 hours (end of substrate feeding), 
followed by a decrease related to its consumption by the 
yeast cells present in the medium. Consequently, a gradual 
increase in ethanol production occurs during the fermentation 
process, as seen in Fig. 4. That is in agreement with what the 
literature propounds [23], in which ethanol production occurs 
simultaneously with yeast growth (biomass formation) 
because it is associated with the energy metabolism of the 
cell. 

B. Kinetic parameters estimation 
From the application of the particle filter, new values for 

the parameters were found for the proposed cases, as 
presented in Table VIII. Despite the differences in the 
experimental conditions, mainly referring to the CSF, the 
yield coefficients and the kinetic parameter µmax showed 
stable values. While the other parameters values showed a 
larger difference. 
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TABLE VIII.  UPDATE PARAMETERS VALUES 

Parameters 
Values 

Tosetto Hoppe – Hansford 

Yields 
coefficients FB1 FB2 FB3 FB1 FB2 FB3 

YX/S 0.0213 0.0184 0.0211 0.0264 0.0230 0.0198 

YP/S 0.4155 0.4002 0.4015 0.4402 0.3994 0.3872 

Flow rate FB1 FB2 FB3 FB1 FB2 FB3 

F 0.5287 0.7024 0.8052 0.6478 0.5838 0.889 
General 
kinetic 

parameters 
FB1 FB2 FB3 FB1 FB2 FB3 

µmax 0.0233 0.0215 0.0303 0.0328 0.0313 0.0285 

KS 12.086 11.528 24.982 7.46111 12.754 24.496 
Kinetic 

parameters 
for Tosseto 

model 

FB1 FB2 FB3 FB1 FB2 FB3 

KIS 794.88 611.09 525.68    

CPmáx 194.29 141.80 92.793    

N 0.0759 0.1061 0.1620    
Kinetic 

parameters 
for Hoppe–
Hansford 

model 

FB1 FB2 FB3 FB1 FB2 FB3 

KIP    207.62 199.89 191.13 

 

C. Statistical Analysis 

TABLE IX.  CORRELATION COEFFICIENTS (R2) OF THE SIMULATION 
THROUGH LIU AND WEST FILTER. 

Data State 
variable 

Kinectics models 

Tosetto Hoppe-Hansford 

FB1 

CX 0.99902 0.99504 

CS 0.99974 0.99925 

CP 0.99665 0.99648 

V 0.99983 0.99868 

Average 0.99881 0.99736 

FB2 

CX 0.99967 0.99922 

CS 0.99788 0.99830 

CP 0.99664 0.99394 

V 0.99983 0.99988 

Average 0.99851 0.99784 

FB3 

CX 0.99766 0.99851 

CS 0.99888 0.99859 

CP 0.99682 0.99652 

V 0.99988 0.99997 

Average 0.99831 0.99840 

 

The percent accuracy of the results with µX kinetic 
model by Tosetto was 99.83 – 99.88% and the best accuracy 
was for condition FB1 (lowest value of CSF and CP). In the 
other conditions, the value of the estimated data was 
decreasing but still with very good accuracy.  

For the kinetic model of µX by Hoppe–Hansford the 
range was 99.74 – 99.84%. The best accuracy in this case 
was for the FB3 data (highest value of CSF e CP), it was also 
observed that the accuracy of the simulation was increasing 
and proportional to the increase in CP, which confirms the 
potential of using the model to represent inhibition by the 
product 

IV. CONCLUSION 
 In this study, mathematical modeling and simulation 
were performed to represent the alcoholic fermentation 
kinetics. Using the particle filter method of Liu and West, it 
was possible to perform the estimates of the state variables 
and parameters of the alcoholic fermentation process based 
on three experimental conditions. The applied technique 
showed good agreement in the estimation of all experimental 
conditions.  

It was possible to verify the inhibition performance by 
the Tosetto and Hoppe–Hansford specific cell growth rate 
models. In this respect, the hybrid inhibition by the presence 
in excess of substrate and product considered by Tosetto 
fitted the data slightly better, although both models were 
99% accurate. 

The results obtained made important contributions to 
research involving fermentation kinetics and computational 
applications. Since, with the use of the mathematical models 
combined with the particle filter of Liu and West (2001), one 
can see the effectiveness of the application of this method 
and the potential incorporation into methodologies aimed at 
greater efficiency in bioethanol production, as well as in 
other fermentative processes. 
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