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Abstract—In this work, the modeling and calculations referring to 
the deflection of special artworks are presented. The type train is 
modeled as two degrees of freedom and mobile base, with the bridge 
deck being considered the mobile base. The base is treated as an 
elastic beam, according to the Euler-Bernoulli theory. The 
fundamental assumption made is that the relative displacements 
between the vehicle and the bridges are synchronous. This allows 
the calculation of natural frequencies, eigenvalues and normal 
modes of vibration of the beam. The temporal response of the beam 
deflection is obtained, assuming that the vehicle employs, at each 
instant of time, an impulse load on the beam. Numerical simulations 
are performed to improve the understanding of the dynamic 
behavior of the structure. 

Keywords—Vehicle-bridge interaction (VBI), Bridge dynamics, 
Bridge deflection. 

I. INTRODUCTION  
Due to their great importance, large structures known as 

Special artworks, such as bridges and viaducts, must have 
their performance monitored periodically. This is because 
large structures have a small margin for safety estimates. 
When it comes to bridges and viaducts, factors such as 
structural access make it impossible to diagnose the conditions 
of use, therefore, when a bridge requires interdiction for 
maintenance or recovery, the impacts on society are 
considerable, from the creation of large traffic jams, 
deviations of long journeys or even structural collapse. 

Stimuli caused by heavy vehicles cause vibrations that can 
significantly affect structural integrity. One way to understand 
the behavior of structures subject to vibrations is to describe a 
correct modeling based on the boundary conditions defined in 
the project. In this context, studies aimed at obtaining a 
structural response have gained strength in recent years. 
Research involving numerical models for vehicle-bridge 
interaction analysis can be seen in Zou et al. [1]; Yang and Lin 
[2] and Zhu and Law [3]. Eigenvalues and eigenfunctions 
problems for bridges idealized as Euler-Bernoulli beams were 
studied in Hayashikawa and Watanabe [4]. In Matsuoka and 

Tanaka´s [5] work, a new method for estimating bridge 
deflection based on track irregularities, measured by a moving 
train, was studied. efficient according to the authors. In 
Corbally and Malekjafariam [6], a new approach is proposed 
that introduces the concept of operational deflection shape 
ratios from the measured responses in two axes of a bridge 
segment. Other results related to the dynamic analysis of 
structures can be detailed in Kwon et al. [7]; Yang et al. [8]; 
Meyer et al. [9]. 

In this approach, the main physical variable to be 
measured is displacement. For this measurement, the 
displacement field is seen as a response to excitation suffered 
by the structure. In the case of special artworks, the main 
excitations are the dynamic loads generated by the flow of 
vehicles, in this context the objective of the work is to present 
a model of dynamic analysis of structures, idealized as beams 
traveled by a train-type with constant speed. 

II. METHODOLOGY   
Special artworks are modeled as beams. The equations of 

motion that describe the behavior of the structure as well as its 
initial and boundary conditions can be derived from 
Hamilton's generalized variational principle. To obtain the 
energy functional, the Euler-Bernoulli theory is employed. 
According to this theory the main hypothesis is that the effects 
of rotation of the cross section, constant, is disregarded when 
compared with the translational displacement. Furthermore, 
the shear strain is disregarded when compared with the 
bending strain. It should also be noted that the present 
methodology is applied when the thickness of the beam is 
small, around ten times, when compared to its length. It is also 
considered that the deformations due to bending are small 
when compared to the length of the structure. So, in this 
context, evaluating that the vertical displacement of the beam 
is ( , )w x t , the displacement field is: 

 , ,  0,  ( , ).xu z w x t v w w x t     



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The deformation components, referring to the 
displacements defined in (1) are: 

,  0,xx x xx yy zz xy yz xxu z w                

,  0.xx x xx yy zz xy yz xxu z w                

The strain energy for xx , denoted by U , can be expressed as: 

 
1

2

2 2
1

0

2 2
2

1 1 (0, ) (0, ) ...
2 2

                ... ( , ) ( , ) ,

L

xx t x

t x

U EI w dx k w t k w t

k w L t k w L t

    

   

  

where the second term on the right side of (4) represents the 
deformation, translational and rotational energy of the spring 
and I denotes the moment of inertia of the cross section of the 
beam about axis y  , 

2 .y A
I z dA   

The kinetics energy is given by: 

2 2 2
1 2

0

1 1 (0, ) ( , ) .
2 2

L

t t tT A w dx m w t m w L t          

In (6) the first term on the right side represents the kinetic 
energy of the beam, and the second term indicates the kinetic 
energy of masses coupled to the beam contours. The work 
done by the transverse distributed loading ( , )f x t  is given by: 

0
.

L
W fwdx   

By Hamilton's generalized variational principle, we obtain 
the differential equation of transverse motion of the beam 

  ( , )xx xx uEI w A w f x t      

with the following board conditions: 

   
1 0

0,xx t x x x
EI w k w w


       

   
2

0,xx t x x x L
EI w k w w


      

  1 1 0
0,x xx u x

EI w k w m w w


       

  2 2 0.x xx u x L
EI w k w m w w


       

The equations in (9) imply the following board conditions. 
In 0x  : 

 1

constant | ( ) 0 or 

          0
x x

xx t x

w w

EI w k w

   

    
 

and 

 
  1 1

constant | 0 or 

   0
x

x xx u

w w

EI w k w m w

   

     
 

In ,x L  

 2

constant | ( ) 0 or 

          0
x x

xx t x

w w

EI w k w

   

   
 

e 

  2 2

constant | 0 or 
   0.x xx u

w w
EI w k w m w

  

     
 

For free vibrations, it is assumed that the external 
excitation is zero: 

( , ) 0,f x t   

therefore, the equation of motion, (8), reduces to: 

  0.xx xx uEI w A w      

For beams made of uniform, E constant material and A
constant cross-sectional area, (2) can be expressed as: 

 , + ( , ) 0,xxxx uc w x t w x t    

where 

.EIc
A

  

 The methodology for solving the free frequencies is based 
on solving the eigenvalues and eigenfunctions of the problem 
(19) that can be found using the method of separation of 
variables as: 

( , ) ( ) ( ).w x t W x T t  

replacing (21) in (19) we have: 

2 4 2
2

4 2

( ) 1 ( ) .
( ) ( )

c d W x d T t
W x dx T t dt

    

Equation (22) can be decomposed into the set of two 
equations: 

4
4

4

( ) ( ) 0,d W x W x
dx

   

2
2

2

( ) ( ) 0,d T t T t
dt

   

where 
2 2

4
2 .A

c EI
      
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The solution of (25) is given by: 

( ) cos( ) sin( ),T t A t B t    

where A and B are constants found from the initial 
conditions of the problem. The solution of (23) is provided by 
means of an exponential form: 

( ) exp( ),W x C sx  

where and are constants. Replacing (27) into (23) we get 
the auxiliary equation: 

4 4 0,s    

whose square are given by: 

 1,2 3,4,     .s s i      

So, the solution of (23) can be expressed as: 

1 2 3 4( ) exp( ) exp( ) exp( ) exp( )W x C x C x C i x C i x          

where , 1, ,4,iC i   are constants. It follows from (25) that 
the natural frequencies of the beam can be determined as: 

.EI
A

 


  

The function ( )W x is known as the normal mode of 
vibration of the structure, characteristic function or even 
eigenfunction associated with the problem (23). For any type 
of beam, there will be an infinite number of eigenfunctions of 
(23) with an associated frequency, or eigenvalue. The 
constants iC in (30) and the value of  in (31) can be 
determined from the boundary conditions of the problem. In 
particular, if we denote by i  the ésimoi  eigenvalue 
corresponding to ( )iW x the eigenfunction the total response to 
free vibration of the beam can be obtained by the principle of 
superposition of normal modes as: 

1
( , ) ( )( cos( ) sin( )),i i i i i

i
w x t W x A t B t 





   

where the constants iA and , ,,  1i iB    are calculated 
from the initial conditions of the beam. 

III. MODELING OF STRUCTURES  
The deflections presented in bridges subject to mobile 

loads can be correctly expressed taking into account the pre-
established boundary conditions, used to determine the normal 
modes of vibration. Following the ideas presented by Kwon et 
al. [7]; the vertical displacements of bridges crossed by heavy 
vehicles are modeled as a mass-spring model on a mobile 
elastic base. It is understood by base the beam that is 
considered of the Euler-Bernoulli type and therefore the 
modeling of the foundation must consider the elastic behavior 
of the structure. Figure 1 presents the analysis scheme where 

1 1 1 2 2 2 e  e,  e ,  k m c k m c  they are the spring constant, mass 
and damping for the vehicle body and wheel, respectively. 

 

 

Fig. 1. Schematic: beam and train-type model. 

A. Equations of Motion 
In this section, the modeling of the bridge will be done 

along with the standard train. For this, the structure will be 
represented by a beam, simulating a mobile base. On the other 
hand, the standard train will be described as the coupling of 
two bodies, as shown in Figure 1, whose masses will be 
denoted respectively by 1 2 e m m  . Together with the masses 
we will also consider the elastic constants ,  ,   1, 2i ik c i 
representing the elastic and dissipative forces of the system, 
for more details see Rao [10]. Following Kwon et al. [7], the 
following hypotheses will be assumed: 

 The structure is idealized as an Euler-Bernoulli beam; 

 Only the vertical displacements generated by the 
vehicle are considered; 

 The vehicle moves at a constant speed. 

 According on image  1 ,  1,2ix i  represent, respectively, 
the displacement of the body and structure of the vehicle, 
while y denoting the displacement of the bridge. The 
modeling is done considering the bridge as a mobile base but 
with elastic behavior. Using the free-body diagram for the 
mass 1m  and 2m , see Figures 1 and 2.  

 

Fig. 2. Free body diagram for mass 1m  

 

 

Fig. 3. Free body diagram for mass 2m  

According to the equations of motion, the following is valid: 
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1 1 1 1 1 1 1 2 1 2 0m x c x k x c x k x      

2 2 2 2 2 2 2 1 2 1 2 .m x c x k x c x k x k y      

Because it is an elastic body and taking into account the 
Euler-Bernoulli theory, it satisfies the following equation: 

4

2 24 ( ) ( , ),

(0) ( ) (0) ( ) 0.

d yEI my k y x F x t
dx

y y L y y L

   

    




where ( , )F x t denotes the charge concentration due to vehicle 
displacement being given by: 

1 2 2 2 1 1( , ) [( ) ] ( ).F x t m m g m x m x x vt      

As it is usual in vibration analysis, we will consider the 
solutions as being harmonic functions, that is, the three 
displacements, ,  1,2 ix i  and y they present movement 
synchrony: 

( )
1 1 ,j tx X e    

( )
2 2 ,j tx X e    

Calculating 1 2 1 2,  ,  ,  x x x x and substituting in equations (33) 
and (34) we get: 

2
1 1 1 1 2 2 1 1 1 2 0m X jc X jc X k X k X         

2
2 2 2 1 2 2 2 1 2 2 2 ( )m X jc X jc X k X k X k x          

The set of equations (39)-(40) can be written in matrix form: 
2

11 1 1 2 1
2

2 22 2 2 2 2

0
,

Xm jc k jc k
X kj c k m j c k

  
  

         
              



whose solution, by Cramer's rule, is given by: 

2 2 1
1 2 2

1 1 1 2 2 1 2 2 2 1

( ) ( )( , ) ,
( )( ) ( )( )

k jc k xX x
m jc k m j c k j c k jc k

 
     

 


          



 
2

2 1 1 1
2 2 2

1 1 1 2 2 1 2 2 2 1

( ) ( )( , ) .
( )( ) ( )( )

k m jc k xX x
m jc k m j c k j c k jc k

  
     

 


          



 

In what follows, we will make use of the following notation: 

4 2
1 1 2 1 2 2 1 1 2 1 2( ) ( )g m m m k m k c c k k        

3
2 1 2 1 2 2 1 1 2( ) ( ) ( ) ,g c m m c k c k c       

1 1 2 1 2 2 2

1 2 2 2 2 1

( ) ( ) ( )...
               + ( ( ) ( ))
h k k g k c g

j k k g k c g
   

  
  


 

2
2 2 1 1 1 1 2 2

2
2 1 1 2 2 1 2 1

( ) ( 2) ( ) ( )...
       ( ( ) ( ) ( )).
h k m k k g c k g

j k m k k g c k g
    

   

   

   
 

Using equations (43), (44), (45) and (46) and simplifying 
equations (41) and (42) we get: 

1
1 2 2

1 2

( )( , ) ( ),
( ) ( )

hX x x
g g

 
 




 

2
2 2 2

1 2

( )( , ) ( ).
( ) ( )

hX x x
g g

 
 




 

In equations (47) and (48), it can be seen that the 
oscillation amplitude of the vehicle depends both on the 
frequency and the position of the particle. 

For the calculation of the displacement of the base, the 
following equation must be satisfied for: 

4

2 2 24 ( , ).d yEI my k y k x F x t
dx

     

Note that if we consider the operator 
4

24 ,dH EI k I
dx

   

acting on space 2K , see in Meirovitch [11], with board 
conditions given in (35), then equation (50) can be written as: 

2 2 ( , ).Hy my k x F x t    

 According to Meirovitch [11], the first step to solve 
equation (51) is to calculate the natural frequency of the 
system of equation (51), which naturally leads to the system 
of eigenvalues for the operator H  , 

2

0   
  
  , 1: 4. i

H m
B i
  



 

 

The eigenvalues problem in equation (52) leads to the 
frequency equation given by: 

4 2
2( ) 0,EIs m k    

Doing it 4 2
2

1 ( )m k
EI

    we get: 

4 4 0,s    

which implies that the solutions to the problem must be of the 
form: 

1 2 3 4( ) cos( ) sin( ) cosh( ) sinh( )x c x c x c x c x         
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It follows from the boundary conditions of the problem and 
imposing the condition of existence of non-trivial solutions, 
that the following condition is satisfied: 

( ( )) 0,det A    

where the matrix ( )A  is defined by: 

2 2

2 2 2 2

1 0 1 0
0 0

( )
cos( ) sin( ) cosh( ) sinh( )

cos( ) sin( ) cosh( ) sinh( )

A
L L L L

L L L L

 


   
       

 
  
 
   



To get values from  note that: 

1 4( ( ))  ( ( ), , ( )),
( )( ( ))  ( ( )) .

det A det A A
d dAdet A det A

d d

  
 

 

 


 

The expression on the right in the second equation in (57) is 
defined by: 

4

1 1 1 4
1

( )( )( ( )) ( ( ), , ( ), , ( ), , ( )).k
k k

k

dAdAdet A det A A A A
d d

    
  



   




Using the expression in (58) together with Newton's 
method, approximate solutions in (56) can be computed by 
generating the sequence of eigenvalues  n . 

The system of equations (33) and (34) together with the 
boundary condition (35) is solved taking into account the 
eigenvalues problem in (52). Using the fact that the solution is 
decomposed into normal vibration modes we have: 

1
( , ) ( ) ( ).n n

n
w x t q t x





  

From (51) we get that the following equation is valid: 
4 2

2 1 2 2 2

2
1 1

( ) ( ) ( ) ( , )...

                                                   ( , ) ( ).

( ) [
]

ns x
n n n nEIs k q t m q e m m g m X x

m X x x vt

 

  

    

 




Multiplying both sides of (60) by ( )n x and integrating 
from 0 to  L we get: 

4 2
2 1 2 2 2

2 22 1

1 1 2 2
1 2

( ) ( ) ( ) ( )...

( 1)                                       ( )
( ) ( )

( ) [
] n n

n n n n n

s vt s vt
n n

n
n n

EIs k q t m q t m m g m h

s e em h
g g

 


 



    









Equation (61) is the bridge oscillation amplitude response. 
Note that (61) shows the explicit dependence of the system 
output on the oscillation frequency and vehicle speed. 

The image 2 presents the solutions of (61) for values of  
1:10n  , and image 4 is the sum of all displacements 
 ,nw x t . 

 

Fig. 4. Structure modal Displacements 

IV. NUMERICAL RESULTS AND CONCLUSIONS  
The analyzed project is a reinforced concrete viaduct with 

34.50m in length and 13.20m in width, executed on a state 
highway in the municipality of Goiás. The superstructure is 
designed in a straight line, consisting of three spans: a central 
one measuring 14.00m and two adjacent to the central span 
measuring 7.00m. The spans are constituted by an 
independent structure simply supported. The structure is 
formed by the set of 9 beams in the central span as shown in 
image 3. The work was designed for class 45, using a type 45tf 
vehicle as prescribed by NBR 7188/82 (brazilian rule), 
moving at a constant speed of approximately 80km/h. For this 
class of structures images 2 and 4, respectively represent the 
displacements of several normal modes of vibration and the 
displacement involving the sum of ten modes of vibrations. It 
can be seen from image 4 a damping factor of the structure, 
even though the equation is a free frequency model. The 
justification for this fact is that one must take into account the 
fact that concrete is a composite material, and steel is the main 
damping factor. 

 

Fig. 5. Bridge scheme 

 

TABLE I.  STRUCTURE GEOMETRY 

 Module of 
Elasticity 

Density of 
Material 

Section 
Area 

Moment of 
Inertia 

35000 (Mpa) 300 (kgf/cm²) 4,81 (m²) 49,33x10-4 

(m4) 
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Fig. 6. Structure displacement 

 

 

 

Fig. 7. H operator autofunctions for the first five vibration modes 
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