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Abstract— In the field of computational vision, image 
segmentation is one of the most important resources. Nowadays, this 
procedure can be made with high precision using Deep Learning, 
and this fact is important to applications of several research areas 
including medical image analysis. Image segmentation is currently 
applied to find tumors, bone defects and other elements that are 
crucial to achieve accurate diagnoses. The objective of the present 
work is to verify the influence of parameters variation on U-Net, a 
Deep Convolutional Neural Network with Deep Learning for 
biomedical image segmentation. The dataset was obtained from 
Kaggle website (www.kaggle.com) and contains 267 volumes of 
lung computed tomography scans, which are composed of the 2D 
images and their respective masks (ground truth). The dataset was 
subdivided in 80% of the volumes for training and 20% for testing. 
The results were evaluated using the Dice Similarity Coefficient as 
metric and the value 84% was the mean obtained for the testing set, 
applying the best parameters considered.  

Keywords— Deep Learning, Biomedical Image Segmentation, Fully 
Convolutional Networks, U-Net, Computed Tomography  

 

I. INTRODUCTION  
Deep Learning (DL) is a branch of machine learning 

developed by learning successive layers, almost always using 
models called neural networks [1], through data 
representations. Nowadays the application of DL has 
presented promising results in biomedical image 
segmentation. Zhang et al. [2] designed Convolutional Neural 
Networks (CNNs) [3] architectures to segment infant brain 
tissues in Magnetic Resonance (MR) images which is a 
process even more difficult for adults due to the low tissue 
contrast, increased noise and ongoing white matter 
myelination. The CNNs segmentation of isointense-phase 
brain image outperformed competing methods on a set of 
manual process. Oktay et al. [4] applied the U-Net model to 
the segmentation of pancreas, which presented Dice Similarity 
Coefficients (DSCs) 2% to 3% higher than other models. This 
improvement in pancreas segmentation is important in many 
clinical applications of liver segmentation in 3D images [5]. 
In addition, through the application of DL, it becomes possible 
to perform more qualitative or even quantitative analysis of 
the regions of interest, such as lesions [6], a factor that 
represents important advances for the entire healthcare sector. 
The use of DL generates results that do not rely on the 
subjectivity of the observer and provide a decrease of the time 
needed for segmentation once the model is trained.  

Although several Artificial Neural Networks (ANNs) [7] 
have been used in biomedical image segmentation, in this 
work, the U-Net architecture was used. U-Net is a Fully 
Convolutional Neural Network (FCN or Fully Convnet) that 
has been consolidating as one of the most prominent ANNs 
for biomedical images. 

The performance improvement of U-Net into images 
segmentation can be achieved by adjusting the parameters for 
the problem in question. Goyal et al. [8] investigated the 
influence of batch size in other CNNs performances and 
verified that large minibatches cause optimization difficulties 
when working with ImageNet dataset [9]. Furthermore, 
Nishio et al. [10] developed a methodology for determining 
cancer diagnoses, classifying nodules between benign and 
malignant as well as verifying the stage of the disease, which 
could correspond to primary lung cancer or metastatic lung 
cancer. Evaluating the effect of image size as input of the deep 
convolutional neural network used, testing image sizes equal 
to 56, 112 and 224, the results showed that larger image sizes 
as inputs improved the accuracy of lung nodule classification.  

The objective of the present work is to evaluate the 
influence of U-Net parameters variation during the 
segmentation of lung computed tomographies. This way, it is 
possible to segment the lungs in the tomography with high 
precision which makes subsequent processes easier, for 
example, the detection of pulmonary nodules for early 
diagnosis of lung cancer.  

The remaining of the article is structured as follows. 
Section II contains the theoretical framework. Section III 
presents the adopted methodology. Section IV is dedicated to 
the results and discussions. Finally, section V contains the 
conclusion of the work.   

 

II. THEORICAL FRAMEWORK 

A. Biomedical Image Segmentation 
Image segmentation is considered the most important 

medical imaging process and corresponds to the extraction of 
the Region of Interest (ROI), subdividing the image into areas 
based on specific characteristics, such as segmenting body 
organs and tissues to detect tumors and other elements and this 
division can be applied for both 2D and 3D data [11]. The 
binary segmentation, applied in the present work, subdivides 
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the image in a white part that corresponds to the mask 
containing the ROI, and a black part as background. Once 
obtained, in addition to detecting tumors or other 
abnormalities, the masks can measure tissue growth analyzing 
the growth of possible tumors and help in treatment planning. 

 

B. Fully Convolutional Neural Networks 
FCNs are classified as a specific type of CNNs that 

contains a convolutional path connected to a Fully Connected 
(FC) layer [12]. The FCs has Multilayer Perceptron (MLP) as 
main representative and they are used to classification. The 
main difference between the designs of CNNs and FCNs is 
that the last one has a deconvolutional path, also called 
expansion path, instead of the dense layer. Therefore, FC 
reduce the number of parameters once there are no   FC layers, 
speeding up learning and inference. As output, the FCNs 
generate a pixel vector whose size corresponds to the input 
data [13]. 
 
 

Fig. 1. Architecture of U-Net 

C. Net 
U-Net is an FCN created by Ronneberger, Fischer and 

Brox [14] in order to cope with biomedical images 
segmentation. The architecture of the ANN is composed of 
two paths. The first path is called the contracting one, which 
aims to capture the context. On the other hand, the second path 
corresponds to the expanding path, which allows precise 
localization. Precisely, because of the fact that the database of 
biomedical images uses not to be very large, the authors 
created a network that is able to be trained end-to-end and 
presents accurate results.  

In Fig. 1, each blue box corresponds to a multi-channel 
feature map. The path indicated by the red arrows on the left 
side of the image corresponds to convolutional path, also 
known as downsampling path. On the right side, indicated by 
green arrows, there is the deconvolutional path or upsampling 
path. Just before the output, there is a layer called Dropout, 
where some neurons are randomly turned off during the 

training. This regularization is a method to avoid overfitting 
in the process. 

 

D. Batch Size 
During each epoch, all training set was used but 

subdivided in batches, for updating the U-Net weights and 
improving performance. Batch Size is the hyperparameter in 
Convolutional Neural Networks that corresponds to the 
number of images used to train a single forward and backward 
pass. The correlation between CNNs performance and Batch 
Size also depends on the datasets nature, mainly in the case of 
medical ones due to its complexity [15]. 

 

E. Early Stopping 
Early Stopping is considered a regularization method 

capable of determining when to stop the execution of an 
iterative algorithm [16]. This callback calculates the precision 
of segmentation or classification using validation data. It 

interrupts the training when precision stops improving, 
avoiding overfitting, within a given range called patience that 
corresponds to its most important hyperparameter.  

 

F. Related Works 
Paiva et al. [17] used U-Net to segment microcomputed 

tomography images which the ROI corresponds to lenses of 
tadpole specimen of the frog Thoropa miliaris and compared 
the performance to methods of semiautomatic segmentation. 
The research concluded that the automatic segmentation using 
Fully Convnet was much faster than the semiautomatic 
processes and it also showed high accuracy.  

Moura and Meneses [18] segmented heart computed 
tomography images testing U-Net performance with number 
of epochs (50, 100) variation, number of features (32, 64) 
variation, BatchNormalization, RMSprop optimizer function 
and BinaryCrossentropy loss function. The authors concluded 
that there was no statistically significant difference between 
the different parameters adjustment, therefore the chosen 
model could be the one with the smallest standard deviation 
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(0.065) and the smallest time of execution (368 seconds), 
which was U-Net with 32 feature maps, BatchNormalization 
and 100 epochs.  

Saood and Hatem [19] segmented lung Computed 
Tomography (CT) using U-Net and SegNet in order to detect 
and label infected tissues in the lungs and contribute to verify 
the diagnosis of patients contaminated by COVID-19. The 
results of the work presented that U-Net showed better 
performance as a multi-class segmentor. 

Kandel and Castelli [15] classified images from a 
histopathology dataset, testing batch size equal to 16, 32, 64, 
128 and 256, with fixed learning rate 0.001 and Adam 
optimizer. The authors concluded that the largest batch size 
presented the highest performance. 

Thambawita et al [20] classified gastrointestinal 
endoscopy images using two different CNNs models testing 
image resolutions ranging from 32x32 to 512x512 pixels. The 
results showed that the best performance occurred when the 
models were training and applied into testing data with the 
highest image resolution.  

 

III. MATERIAL AND METHODS 
The code was implemented in Python 3.8.13, using Keras 

2.6.0 API, Numpy 1.21.5, and OpenCV 4.5.5.64 with 
Tensorflow 2.6.0 as backend. An HP Elitedesk 800 desktop 
was used with an Intel Core i7-6700 3.40 GHz CPU, 16 GB 
RAM, Windows 10 Pro 64 bits Operating System, and an 
Nvidia GeForce GT 730 GPU. 

Fig. 2 presents the research methodological flowchart and 
each stage will be described during the following sections.  
 
 

Fig. 2. Methodological Flowchart 
 

A. Dataset 

Fig. 3. Representation of Dataset Volumes 
 

The CT volumes were downloaded from Kaggle website 
(https://www.kaggle.com/datasets/kmader/finding-lungs-in 

ct-data?resource=download) which contains several open 
source datasets.  

 

The database used is composed of 267 lungs CT scans and 
each volume presents 2D images and their corresponding 
mask representing the ROI highlighted in white and the 
background in black. The data contained 512x512 pixels on 
its dimensions. 
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B. Data Preprocessing 
Before starting the segmentation, there were three stages 

of preprocessing that had to be performed. First step was to 
subdivide the volumes in training and testing. Therefore, 80% 
of the initial data became training and validation data, 
corresponding to 214 volumes, while 20% of the initial data 
became testing data, equivalent to 53 volumes. Secondly, the 
images were resized for ensuring the correct reading of the 
data and avoiding possible differences in file dimensions.  

Thirdly, the images were normalized. Let I be an n-
dimensional grayscale image. A linear normalization 
transforms 𝐼𝐼: {X ⊆  R�} ⟶ {𝐼𝐼���, … , 𝐼𝐼���}  with intensity 
values in the range (𝐼𝐼���, 𝐼𝐼��� ), into a new image 𝐼𝐼�: {X ⊆
 R�} ⟶ {𝐼𝐼� ���, … , 𝐼𝐼� ���} with intensity values in the range 
(𝐼𝐼� ���, … , 𝐼𝐼� ���). The linear normalization is represented by: 

 𝐼𝐼� = (𝐼𝐼 − 𝐼𝐼���) �� ���� �� ���
���������

 

where 𝐼𝐼� is the new intensity, 𝐼𝐼 is the initial intensity, 𝐼𝐼� ���  
is the desired minimum intensity, 𝐼𝐼� ���  is the desired 
maximum intensity and 𝐼𝐼���  and 𝐼𝐼���  are the current 
maximum and minimum intensity.  In this case, the minimum 
value of the range is equal to 0 while the maximum one is 
equivalent to 1.

C. Data Augmentation 
Once the preprocessing was completed, a process of Data 

Augmentation [21] was realized to enable an increase in the 
number of training volumes based on the original ones. In 
order to add more variability in the dataset, certain geometric 
transformations were applied, such as horizontal and vertical 
displacement of the lungs in the images, rotation and zoom. 
With these changes, from each original image 32 new images 
were generated, improving quality of the training data and 
avoiding overfitting. 

 

D. Callbacks 
Besides Early Stopping as mentioned in section II, the 

model was performed using two other callbacks, Model 
Checkpoint and Learning Rate Scheduler, respectively to save 
the best weight configuration in a .h5 format file and to update 
the value of the optimization rate between the epochs.  

 

E. Data Splitting 
Furthermore, of the 214 volumes reserved for training, 

only 80% (171 volumes) were actually used for training while 
the remaining 20% (43 volumes) were used for model 
validation. 

 

F. Dice Similarity Coefficient  
The metric used for both training and testing was the DSC. 

The DSC corresponds to a comparison between the result 
shown by the model and the mask equivalent to the image 
segmented that is the Ground Truth (GT), the reference image. 
The metric is a reason between the double of the intersection 
of the compared images and the sum of pixels of the both 
images and can be calculated by the equation below: 

 

             𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝑐𝑐𝐷𝐷𝑐𝑐  =   �[�(����������)∩�(��)] 
�(����������) ��(��)

       (2) 

 

G. Parameter testing 
Different numbers of epochs and patience value from 

Early Stopping were preliminarily tested. The number of 
epochs tested were 10, 50 and 100.  Then, patience values 
tested of Early Stopping were 10, 20, 30, 40 and 50. 
Subsequently, Batch Size values equal to 4, 8, 16 and 32 were 
tested. Finally, Image Size equal to 32, 64 and 128 pixels were 
implemented. Five executions were performed for each 
parameter test in order to analyze its influence on model 
performance. The seed used during each execution was 
randomized with a range of 1 to 100 in order to guarantee 
impartiality in the process. 

 

H. Statistical Analysis 
Kruskal-Wallis and Dunn’s tests [22, 23] were performed 

in order to verify if there is statistically significant difference 
between the parameters’ values tested. The Kruskal-Wallis 
test is used to compare three or more groups of data. If the 
null hypothesis of no statistically significant difference is 
rejected, then the Dunn’s post-hoc test is used for pairwise 
comparison between the groups. The Bonferroni correction 
was applied to Dunn’s test for reducing the Type I Error 
probability. The threshold 0.05 was adopted for the statistical 
tests. The graphs were plotted with Plotly 5.11.0.  
 

IV. RESULTS AND DISCUSSION 

A. Preliminary tests 
Kruskal-Wallis test was implemented to analyze the 

results of number of epochs preliminary test and the p-value 
obtained was equal to 0.6861. The value shows that there is no 
statistically significant difference in model performance using 
different number of epochs, but once using 50 epochs the 
segmentation presented the highest mean (0.7873) and also 
the smallest standard deviation (0.0153), it was selected to 
next steps. 

The same procedure was applied to evaluate the results of 
Early Stopping patience value preliminary test. The p-value 
was equal to 0.4305, which points to the fact that also no 
statistically significant difference was found. Again, once 
patience value equal to 40 obtained the highest mean (0.7880) 
with the smallest standard deviation (0.0170), it was chosen as 
the best parameter to patience.  

 

B. Batch Size 
In Fig. 4, it is possible to verify the boxplots of DSCs 

distribution for Batch Size comparison. Table I presents the 
statistical results for Kruskal-Wallis test. 
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Fig. 4. DSC distribution boxplot for Batch Size 

TABLE I: STATISTICAL RESULTS FOR BATCH SIZE 

 MEAN DSC 

EXEC BATCH 4 BATCH 8 BATCH 16 BATCH 32 

1 0.7815 0.8077 0.8391 0.8142 

2 0.8076 0.7795 0.8347 0.8363 

3 0.8125 0.7592 0.7559 0.8136 

4 0.7760 0.7971 0.8155 0.8313 

5 0.8020 0.7968 0.8153 0.8488 

ST-DEV 0.0145 0.0170 0.0297 0.0135 

MIN 0.7760 0.7592 0.7559 0.8136 

MEAN 0.7959 0.7880 0.8121 0.8289 

MEDIAN 0.8020 0.7968 0.8155 0.8313 

MAX 0.8125 0.8077 0.8391 0.8488 

 

In this case, the p-value obtained with Kruskal-Wallis 
test was equal to 0.028 between batch size values used. Then, 
Dunn's multiple comparisons test with Bonferroni correction 
was applied to the results. 

TABLE II: DUNN’S  MULTIPLE COMPARISONS FOR BATCH SIZE 

 BATCH 4 BATCH 8 BATCH 16 BATCH 32 

BATCH 4 1.0000 1.0000 0.6529 0.1292 

BATCH 8 1.0000 1.0000 0.2878 0.0452 

BATCH 16 0.6529 0.2878 1.0000 1.0000 

BATCH 32 0.1292 0.0452 1.0000 1.0000 
 

Although there is no statistically significant difference 
between the results obtained using batch size 16 and 32, batch 
size 32 was statistically significant different from batch size 8, 
with p-value 0.0452. Batch size 32 also presented a tendency 
for better results, with mean 0.8289 and standard deviation 
0.0135.  

 

C. Image Size 
In Fig. 5, it is possible to verify the boxplots of DSCs 

distribution for Image Size comparison. Table III presents the 
statistical results for Image Size parameter. 

Fig. 5. DSC distribution boxplot for Image Size 

 

TABLE III: STATISTICAL RESULTS FOR IMAGE SIZE 

 MEAN DSC 

EXEC SIZE 32X32 SIZE 64X64 SIZE 128X128 

1 0.8142 0.8568 0.6676 

2 0.8363 0.8515 0.7598 

3 0.8136 0.7909 0.7449 

4 0.8313 0.8680 0.6461 

5 0.8488 0.8315 0.7142 

ST-DEV 0.0135 0.0271 0.0437 

MIN 0.8136 0.7909 0.6461 

MEAN 0.8289 0.8398 0.7065 

MEDIAN 0.8313 0.8515 0.7142 

MAX 0.8488 0.8680 0.7598 

 

The p-value obtained by Kruskal-Wallis was 0.0068 
between image sizes used. Therefore, Dunn’s test with 
Bonferroni correction was also implemented and the results 
are presented as follows. 
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TABLE IV: DUNN’S  MULTIPLE COMPARISONS BY IMAGE SIZE 

 SIZE 32X32 SIZE 64X64 SIZE 128X128 

SIZE 32X32 1.0000 1.0000 0.0710 

SIZE 32X32 1.0000 1.0000 0.0071 

SIZE 32X32 0.0710 0.0071 1.0000 

 

The Dunn’s test results show that there is no statistically 
significant difference between the means obtained using 
image size equal to 32 and 64. There is only a statistically 
significant difference between 64×64 with respect to 
128×128. Furthermore, although image size 32 presented the 
smallest standard deviation (0.0135), once image size 64 
showed the highest mean (0.8398) and the highest median 
(0.8515), it was chosen as the best parameter. 

Fig. 6 presents the segmentation with maximum DSC. It is 
possible to verify that the lung in the tomography has well-
defined edges and low noise.  

Fig. 6. Computed tomography, equivalent Ground Truth and prediction by U-
Net, respectively, of the volume with maximum DSC of testing data. 

 

Conversely, Fig. 7 shows the segmentation with minimum 
DSC, showing that the CT scan has high noise and low 
contrast on its edges.  

Fig. 7. Computed tomography, equivalent Ground Truth and prediction by U-
Net, respectively, of the volume with minimum DSC of testing data. 

 

This way, it is observed that the best segmentations 
occurred to images that had low noise image, the lung borders 
are not scattered and there was a significant contrast between 
the lung and background.  
 

V. CONCLUSION 
In this work, U-Net was used to segment lungs in CT data. 

The dataset was subdivided in training data and testing data 

and the model was trained using the masks (GTs) also 
available in the dataset.  

Four parameter tests were implemented. First, different 
number of epochs and early stopping patience were compared 
with no statistically significant difference observed.  

Afterwards, Batch Size test was performed, in which 32 
was classified as the most satisfactory value, demonstrating 
that the model needed to increase the number of images used 
to training on each forward and backward pass, probably 
because of computed tomography complexity.  

Finally, Image Size test was performed, in which 64×64 
pixels was the dimension that presented better results in 
relation to 128×128, it shows that using the highest 
dimensions available can cause difficulty to model learning 
and segmentation, but the results were not conclusive 
regarding 32×32 pixels. 

  Predictions performed by the model to the testing data 
were compared to the GT, presenting satisfactory results in 
terms of the metrics used as basis throughout the process 
(DSC) even though the low number of volumes in the dataset. 

Therefore, in terms of the dataset used, the present 
research confirms the efficiency of the U-Net architecture in 
order to segment biomedical images, factor which enables its 
implementation to future works of interest to both DL and 
health care applications. 
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