
ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2023106

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol X, Issue 2, July 2023

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2022106

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol IX, Issue 2, July 2022

ARTICLE HISTORY

Received 13 Mar 2023
Accepted 17 May 2023

Eduardo Stefanato
Dept. of Materials Physics and Mechanics
University of São Paulo
São Paulo, Brazil
edustefanato@gmail.com 
ORCID: 0000-0002-2318-9884 

Vitor Oliveira
Dept. of Experimental Physics
University of São Paulo
São Paulo, Brazil
vitor.souza.premoli@gmail.com
ORCID: 0000-0001-7688-6854

Christiano Pinheiro
Dept. of Rural Engineering
Federal University of Espírito Santo
Alegre, Brazil
christrieste@yahoo.it 
ORCID: 0000-0003-2898-8738

Regina Barroso
Dept. of Applied Physics
Rio de Janeiro State University
Rio de Janeiro, Brazil
cely_barroso@hotmail.com  
ORCID: 0000-0001-6348-694X

Anderson Meneses
Inst. of Engineering and Geosciences
Lab. of Computational Intelligence
Federal University of Western Pará
Santarém, Brazil
anderson.meneses@ufopa.edu.br  
ORCID: 0000-0003-1461-2772

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
, I

ss
ue

 2
, J

ul
y 

20
23

107107

E
. S

te
fa

na
to

, V
. O

liv
ei

ra
, C

. P
in

he
ir

o
, R

. B
ar

ro
so

 a
nd

 A
. M

en
es

es
,  

“S
eg

m
en

ta
ti

o
n 

o
f 

Lu
ng

 T
o

m
o

g
ra

p
hi

c 
Im

ag
es

 U
si

ng
 U

-N
et

 D
ee

p
 N

eu
ra

l N
et

w
o

rk
s”

,
La

ti
n-

A
m

er
ic

an
 J

o
ur

na
l o

f 
C

o
m

p
ut

in
g

 (
L

A
JC

),
 v

o
l. 

10
, n

o
. 2

, 2
0

23
.

Segmentation of Lung 
Tomographic Images 

Using U-Net Deep Neural 
Networks



109ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2023108
DOI: 10.5281/zenodo.8071498

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol X, Issue 2, July 2023 
 

Segmentation of Lung Tomographic Images Using 
U-Net Deep Neural Networks 

 
Eduardo Stefanato  

Dept. of Materials Physics and 
Mechanics 

University of São Paulo 
São Paulo, Brazil 

edustefanato@gmail.com  
ORCID: 0000-0002-2318-9884  

Regina Barroso 
Dept. of Applied Physics                        

Rio de Janeiro State University 
Rio de Janeiro, Brazil 

cely_barroso@hotmail.com   
ORCID: 0000-0001-6348-694X 

Vitor Oliveira 
Dept. of Experimental Physics 

University of São Paulo 
São Paulo, Brazil 

vitor.souza.premoli@gmail.com 
ORCID: 0000-0001-7688-6854  

Anderson Meneses 
Inst. of Engineering and Geosciences 
Lab. of Computational Intelligence 
Federal University of Western Pará 

Santarém, Brazil 
anderson.meneses@ufopa.edu.br   
ORCID: 0000-0003-1461-2772 

Christiano Pinheiro 
Dept. of Rural Engineering 

Federal University of Espírito Santo 
Alegre, Brazil 

christrieste@yahoo.it  
ORCID: 0000-0003-2898-8738 

 

 

Abstract—Deep Neural Networks (DNNs) are among the best 
methods of Artificial Intelligence, especially in computer vision, 
where convolutional neural networks play an important role. There 
are numerous architectures of DNNs, but for image processing, U-
Net offers great performance in digital processing tasks such as 
segmentation of organs, tumors, and cells for supporting medical 
diagnoses. In the present work, an assessment of U-Net models is 
proposed, for the segmentation of computed tomography of the lung, 
aiming at comparing networks with different parameters. In this 
study, the models scored 96% Dice Similarity Coefficient on 
average, corroborating the high accuracy of the U-Net for 
segmentation of tomographic images. 

Keywords—U-Net, Semantic Segmentation, Deep Neural 
Networks, Biomedical Images 

I. INTRODUCTION 
In recent years, several works involving Artificial 

Intelligence (AI) models in biomedical applications have been 
successful in their proposal. According to [1] and [2], startups 
such as Ubenwa use acoustic signal processing and machine 
learning to optimize the diagnosis of asphyxia during birth 
under low resources.  

In other work, Bellemo et al. [3] conducted a study that 
examines the potential of AI to diagnose diabetic retinopathy 
in Zambia. Therefore, in view of the great impact and 
complexity of AI, it is divided into sub-areas of study based 
on its methods, applications and architectures. One of such 
areas is Deep Learning (DL) [4].  

DL focuses on complex neural networks architectures 
called DNNs (Deep Neural Networks). According to [5], DL 
models have architectures with multiple hidden layers, giving 
depth and complexity to the network. This complexity allows 
the network to learn different features with various levels of 
abstraction and generality. 

There are several architectures of DNNs, characterized by 
different method or application, which are used for example 
for partitioning regions of interest in a set of images. This 
image processing task is called segmentation and can be 
applied in various fields such as engineering or medicine.  

According to Santos et al. [6], segmentation aids the 
processing and analysis of medical images by splitting it, and 
using its parts for correlation with normal anatomy or lesions. 

Segmentation of biomedical images has a great 
importance during a diagnosis, because locating tumors or 
organs in a medical image is a laborious process, even more 
so when applied to a large number of images that make up a 
volume of the examined body [7]. Basically, in a manual 
segmentation, the professional observes and partitions the 
objects of analysis.  

If the expert uses algorithms or software, then it is a 
semiautomatic segmentation. For example, local adaptive 
segmentation algorithms can provide accurate and robust 
results. However, there is an influence on the quality of 
segmentation according to the settings applied by each 
practitioner [8], [9]. 

Since the manual or semiautomatic methodology is 
repetitive, it becomes less productive and susceptible to 
mistakes. Therefore, segmentation has been automated and 
performed with different mathematical and computational 
methods such as prototype pairing, geometric modeling, 
algorithms, statistics, and neural networks [10]–[12].  

In this sense, there are several architectures of DNNs for 
image segmentation, including optimized for medical images 
such as conventional X-rays, Computed Tomography (CT) 
and Magnetic Resonance. Some of them are used in the works 
of Yang et al. [13], Santos et al. [14] and Shusharina et al. [7]. 

Among the DNNs used for segmentation, U-Net [15] has 
achieved prominence. The great performance of U-Net in 
segmentation tasks is a result of its architecture based on 
successive convolutions and deconvolutions, configuring 
encoding and decoding sections. 

Such a network was first implemented by Ronneberger et 
al. [15] for biomedical segmentation of 2D images. It was later 
refined to be applied to 3D images by Çiçek et al. [16]. This 
peculiarity of U-Net has made it one of the main networks 
used in the segmentation of medical or biomedical images, 
even requiring less data (images) to achieve good results [17]. 
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For example, Dong et al. [18] used U-Net for semantic 
segmentation, highlighting the objects of interest. After 
segmentation, the objects were classified according to their 
degree of similarity as lung (left or right), heart, esophagus, or 
vertebra. Christ et al. [19] applied two U-Net cascade 
representations, with one of them, they intended exclusively 
for segmentation and localization of the liver. The other 
network was in charge of segmenting the tumor within a 
delimiting region of the CT image. 

Therefore, considering the impact that U-Net architecture 
has on the segmentation of biomedical images, the current 
work aims to study the performance of U-Net in the 
segmentation of lung CTs. Analyzing a possible significant 
influence of the number of levels on the network performance 
through two architecture configurations. Some training 
parameters, namely the number of epochs (iterations) and the 
Batch Size (BS) were also investigated.  

Thus, in the present study an evaluation of the 
effectiveness of some U-Net models is proposed for 
segmenting healthy lung CT scans. Besides the validation of 
the networks, it is expected to consolidate one or more models 
for possible applications in the biomedical area, according to 
the works of Paiva et al. [20] and Sena et al. [21]. 

II. THEORETICAL BACKGROUND 
Some work and descriptions about neural networks, 

especially U-Net, in image segmentation will be discussed. In 
this aspect, the work goes through some common literature 
and reviews on the subject. From this, it was possible to 
define the types of segmentations seen in the literature, 
besides describing the U-Net from its particularities. 

A. Image Segmentation 
Semantic image segmentation is defined as a process that 

aims to classify the pixels of an image with semantic labels. 
In the case of instance segmentation, it is possible to partition 
individual objects. The combination of both processes is 
known as panoptic segmentation [22]. Thus, in the field of 
computer vision, segmentation is defined as a step that 
precedes the classification of objects of interest [23]. 

Chen et al. [24] reviewed several papers involving the 
segmentation of cardiac images using DL. Using DNNs, it is 
possible to highlight anatomical structures of interest, such as 
ventricles, atria, and vessels. In this aspect, Gosh et al. [23] 
proposes a study on the different techniques used in image 
segmentation. The article brings a list of the different neural 
network architectures used for segmentation as well as their 
singularities.  

In computer vision, the Convolutional Neural Network 
(CNN) is one of the most widespread techniques for image 
segmentation [25]. Its learning, in practical terms, occurs by 
successive segmentations of the input images (forward pass) 
and the retrofitting of the weights (backward pass) after the 
calculation of the loss function [26], [27].  

Wang et al. [28] investigated segmentation for 
pathological analysis. Many machine learning algorithms, 
such as CNNs, have been proposed to automatically segment 

pathology images. According to the authors, CNNs, such as 
Fully Convolutional Networks (FCNs), stand out for their 
accuracy, computational efficiency, and generalizability. 

In biomedical applications, the process of segmentation 
occurs in the partition of an image into multiple segments, 
simplifying a complex digital image. This procedure allows 
removing uninteresting information from other objects or 
artifacts, thus optimizing the image analysis [29].  

In this work, the U-Net models propose a semantic 
segmentation, since it is interested in segmenting the lungs in 
tomographic images. Therefore, the models are not concerned 
with partitioning the objects after their detection, not 
differentiating the left lung from the right lung. 

B. U-Net 
The U-Net architecture was launched in 2015 [15] and has 

been improved since 2016 [16]. Its prominence is its 
effectiveness in segmenting biomedical images without the 
need for a large number of images to achieve this feature [30]. 
Since it is a CNN, it is composed of convolution and pooling 
layers, its particularity lies in the deconvolutions that 
characterizes the FCN.  

Unlike a conventional CNN focused on nominal 
classification, the goal of the U-Net is to generate new images 
properly segmented, keeping the dimensions of the input 
image and the "masks", called Ground Truths (GTs) [26]. The 
GTs represent the images segmented manually by the 
professional, they are the ones that together with the input 
images will feed the network for the beginning of the training.  

The insertion of the input images starts the downsampling 
step, described as the process of successive convolutions that 
make the image contraction and encodes its information. This 
process is also called encoder and corresponds to the typical 
organization process of a CNN [15], [25].  

The encoder stage ends at the level where the lower feature 
map is. From this level on we have the survey layers, also 
called decoder, which is composed of successive 
deconvolutions that reduce the number of channels and 
decode the information, expanding the image by unpooling 
and highlighting the segmented objects [5]. Sha et al. [31] 
present an application of U-Net, a semantic segmentation 
CNN, modified for climate analysis.  

The differential of the U-Net architecture is the skip-
connections, which are non-sequential neural connections 
between the symmetric convolution and deconvolution layers. 
Thus, obtaining an improvement in the updates of the weights 
and avoiding the saturation gain as the network increases its 
depth [15]. 

This particularity causes U-Net architectures to use 
discrete details learned at the encoder stage to build the 
segmented image at the decoder layers [30]. Such architecture 
can be visualized in Fig. 1. Its design diagram represents one 
of the networks tested in the present work, based on [31], with 
5 levels. Fig. 2 represents the second U-Net architecture of the 
work, with 7 levels.
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Fig. 1. Diagram of U-Net architecture "v1" with 5 levels. The architectures 
have the conventional structure of a 2D U-Net with a rectified linear 
activation function (ReLU). 

 

Fig. 2. Diagram of the "v2" U-Net architecture with 7 levels that features 
two more encoder/decoder layer pairs than "v1". The architectures have the 
conventional structure of a 2D U-Net with a rectified linear activation 
function (ReLU). 

III. METHODOLOGY 
The methodology used in the work was divided into five 

parts, aiming at reproducibility. The first and second parts 
refer to the data used for training the neural network, the third 

and fourth parts to the architectures of the neural network and 
its training. The fifth part is about the evaluation method, 
followed by the metrics used for scoring, and finally the 
statistical analysis used to verify a possible significant 
difference between the models. 

A. Dataset 
The images used for training and validation of the 

networks come from the Cancer Image Archive platform 
(cancerimagingarchive.net). Three of the 60 thoracic CT 
image sets from the 2017 AAPM Thoracic Auto-segmentation 
Challenges [32]–[34] were used. Each set is a scan that 
contains the entire region of a patient's chest, there was 
concern that the sets chosen were from different patients, 
aiming for a more generalist training.  

Each thoracic volume image battery has manual contours 
outlined according to the RTOG1106 guidelines. The contours 
of each tone highlight some organs such as heart, lungs (left 
and right), esophagus and vertebra. Each raw set of images of 
the first, second and third patient have 161, 154 and 148 
images, respectively. 

B. Data Preprocessing 
The sets of images obtained have a lot of information that 

is not relevant to the network, i.e., because they are a full chest 
scan, they have images without the presence of the lungs. 
Therefore, in view of the large number of irrelevant images in 
each set, it was necessary to remove such slices from the total 
volume.  

After this selection, we obtained 193 images of the first 
plus second patient that were used for training and internal 
validation. In addition, 71 images of the third patient were 
separated for testing and network evaluation.  

The second step in the grouping was to extract the GTs 
from each volume, for which it was necessary to use the "3D 
Slicer" software. This open source program is recommended 
by the Cancer Image Archive to interpret the images in 
DICOM (short for "Digital Imaging and Communications in 
Medicine") format.   

Since the objective of the work is to analyze only the 
segmentation of the lungs. The other contours of the heart, 
esophagus and vertebra were removed, thus obtaining only the 
unified and binarized GTs of the lungs. 

The images obtained have, by default, 512 × 512 pixels, 
however, such dimension includes other elements that are not 
important for the network, such as the table where the person 
lies down to perform the exam. Therefore, it was necessary to 
crop the images to remove such elements, resulting in new 
images with varied dimensions and specified in Fig. 3. 

After the cropping, the images were resized to the standard 
format (512 × 512). It is worth mentioning that the images 
were extracted in TIF (Tagged Image File) format, aiming for 
greater compatibility with the Python language and libraries. 
Besides this change, the resolution of the images was reduced 
from 32 bits to 8 bits. 

Subsequently, the images were imported and interpreted 
as a list of matrices. Each element of the matrix, which 
corresponds to the pixels, went through a normalization 
process from the maximum and minimum pixel values. After 
normalization, a list of pixel matrices ranging from 0 to 1 was 
obtained from both the input images and the GTs. 
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Fig. 3. Samples of the input images and their respective GTs, taken from 
the first, second and third patient sets with dimensions equal to (387 × 313), 
(387 × 387) and (428 × 336), respectively. The training images feed the 
models that after being saved are loaded with new test images. 

C. Network Architecture 
With the images properly formatted, the next step was to 

build the U-Nets models. Taking into account the impact that 
the number of levels can have on the final performance, two 
network configurations were implemented (v1 and v2), 
respectively with 5 and 7 levels, see Fig. 1 and Fig. 2.  

The convolution layers are two-dimensional, followed by 
max-pooling layers. ReLU [35] is the activation function 
inherent to the process. The dropout is used to avoid 
overfitting, while the concatenation layers illustrate the skip-
connection action [26], [15]. 

Training a CNN for segmentation or classification can be 
summarized as minimizing the loss function. To complement 
this learning process, the Adam optimizer was used. After the 
architecture design was finalized, training methods were 
assigned to the network function. 

D. Network Training 
One of the techniques used to generalize the input data is 

"Data Augmentation", which generates new images coming 

from the input images from different perspectives. Data 
Augmentation was used to generate input images and their 
respective GTs horizontally inverted, doubling the amount of 
images during training.  

In view of the investigative study of BSs in the training 
stage, the callbacks "ReduceLRonPlateaus" and 
"EarlyStopping" from the Keras library were used. The 
purpose of this is to establish a common iteration for all 
models, allowing comparison of BSs. 

The callbacks are used by DNN during training, and are a 
compilation of functions for monitoring the internal states and 
statistical results of the model [26], [36]. “EarlyStopping” is 
responsible for terminating the DNN training if the model 
does not show a decrease in the validation group error after a 
specific number of epochs, such number is called "patience".  

During the training process, if there is no decrease in error 
for a "patience", "ReduceLRonPlateau" reduces the U-Net 
learning rate. This method is used to avoid a local optima and 
find the global optima. 

To study the impact of BSs on network progress, the two 
architectures were trained with three different BSs; 4, 8 and 
16. The analysis of the number of epochs was done by 
studying network performance according to loss.  

“EarlyStopping” is a good way to establish the number of 
epochs a network needs. Through a series of preliminary tests, 
a number of epochs equal to 80 was empirically estimated for 
all models. Then, 10 trainings were done for each BS, that is, 
30 models of each version of the neural network (v1 and v2), 
totaling 60 trained models. 

E. Evaluation 
To evaluate the performance of networks, it is necessary 

to have a number of models capable of covering various 
training scenarios. Therefore each net configuration was 
trained 10 times with random starts. This approach allows the 
models to be analyzed with a high degree of generalization 
and reproducibility.  

This method consists of training the net with all training 
samples, for internal validation of the network. One of the sets 
(the testing set) is separated to test the model after training. 
The segmented images from the test set are separated and 
evaluated later. 

In this sense, the set of two patients was divided into 80% 
of the images for training and 20% for internal validation of 
the network. The images from the third patient was used in the 
testing stage, where the performance data was collected based 
on the metrics established in the work.  

Such a method is ideal for cases where there is little data, 
because the model error was calculated for each sample, 
obtaining a final average of the test volume and reducing the 
computational cost. 

F. Dice Similarity Coefficient 
There are several metrics to evaluate and validate DNN 

models. Generally, each metric can be applied in different 
situations, but there are certain fields where its use best 
matches the performance of the neural network, delivering 
higher reliability. 
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The Dice Similarity Coefficient (DSC) is a metric that 
analyzes the similarity between two samples [37]. DSC is 
commonly used in biomedical image analysis. It can be 
defined as the ratio of twice the area of overlap between 
segmentations and GTs by the total number of pixels [22].  

The DSC is identical to the F1 Score [38] and has its 
mathematical representation described in (1). Where |∙| 
represents the cardinality of sets A and B. 

 DSC = 2|A∩B|
|A|+|B|

 

In other words, the DSC is a measure that quantifies the 
degree of similarity between the segmented image obtained by 
the model and the reference image (GT) during the supervised 
training or testing step. The DSC for each image can vary 
between 0 (no overlap) and 1 (complete overlap). 

G. Statistical Analysis 
After the trainings, each model went through the testing 

step with the third patient data. After segmentation, the DSC 
of such a set was calculated. The scores were organized 
according to the network version and BS, so the comparison 
was made between BSs per model version.  

To check for a possible statistically significant difference 
between BSs, the Kruskall-Wallis test [39] was used on the 6 
groups of data, see Table 1. The p-value shows whether or not 
the null hypothesis shall be rejected for values above or below 
5%. In this case, the null hypothesis is that there is no 
statistically significant difference between the groups if the p-
value is less than the 0.05 threshold.  

If there is statistically significant differences, Dunn's test 
[40] shall be used. Dunn's test aims to find which pairs of 
groups, within each version of the model, have a significant 
difference. 

IV. RESULTS AND DISCUSSIONS 
As described in the methodology, 60 DNNs were trained 

and the models were saved to receive the test images. Table 1 
shows the scores of the v1 and v2 models with 10 runs for each 
BS. The bottom of Table 1 displays the mean, standard 
deviation, and the maximum and minimum value for each 
column. 

From the preview results, it can be seen that all models 
obtained a performance above 90%, except for one of the v2 
models with BS equal to 8. Such results reinforce the positive 
deliberations about U-Net. 

A. Statistical Analysis of The Models 
From these data, the Kruskal-Wallis test was applied, and 

the null hypothesis can be accepted, since the p-value was less 
than 5% (p-value < 0.05). The boxplots in Fig. 4, 5 and 6 show 
a trend towards higher DSCs for BSs equal to 16. This 
observation also occurs in Dunn's test, as described later. 

 Using larger batches allows the training time to be 
reduced. Dong et al. [18] used 35 thoracic CT sets to train the 
network, for these cases, not taking advantage of parallel 
processing can make training slow and error prone.  

In [41]–[43], the authors used different methods to 
determine the training parameters, either through prior 
knowledge or experimental testing. The choice of parameters 
such as BS may be little debated, however, the statistical study 
of these parameters allows training to be optimized with 
greater reliability and reproducibility.  

Kandel and Castelli [44] show a high correlation between 
BS and learning rate. According to the authors, large BSs 
perform better for large learning rates. Such a correlation can 
be tested in future work by bringing a statistical study on such 
parameters.

TABLE I.  DSC VALUES FROM THE TEST WITH MODELS V1 AND V2 

Executionsa 
Model v1 Model v2 

Batch size 4 Batch size 8 Batch size 16 Batch size 4 Batch size 8 Batch size 16 

0 0.951 0.957 0.918 0.952 0.959 0.963 

1 0.960 0.958 0.955 0.955 0.957 0.964 

2 0.960 0.957 0.969 0.958 0.956 0.965 

3 0.950 0.960 0.975 0.953 0.950 0.964 

4 0.960 0.937 0.975 0.959 0.864 0.969 

5 0.950 0.958 0.954 0.959 0.957 0.957 

6 0.952 0.958 0.963 0.965 0.958 0.958 

7 0.956 0.957 0.971 0.959 0.962 0.961 

8 0.958 0.960 0.965 0.956 0.952 0.962 

9 0.962 0.963 0.976 0.957 0.955 0.947 

Mean 0.956 0.956 0.962 0.957 0.947 0.961 

Standard Deviation 0.004 0.007 0.017 0.017 0.017 0.017 

Median 0.957 0.958 0.967 0.957 0.957 0.963 

Maximum 0.962 0.963 0.976 0.965 0.962 0.969 

Minimum  0.950 0.937 0.918 0.952 0.864 0.947 
a. Running the tests, each index represents a test and its score from the model with the third patient images.
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Fig. 4. Boxplot representing the distributions of each model, it contains the comparison between all groups. The p-value is shown in the lower left corner. 

 
Fig. 5. Boxplot representing the distributions of model v1, it contains the 
comparison between all batch sizes. The p-value is in the lower left corner. 

 

Fig. 6. Boxplot representing the distributions of model v2, it contains the 
comparison between all batch sizes. The p-value is in the lower left corner. 

Regarding separately, each model in Fig. 5 and 6, only v2 
has a statistically significant difference between the BSs (p-
value = 0.026). The isolated results of v1 also tend to be 
different, but it is not conclusive (p-value = 0.076). Fig. 7 
shows Dunn’s test results for each model, highlighting BS 16, 
the main group responsible for the statistical divergences (p-
value = 0.027). 

 The larger BS was favored with the increase of levels in 
the v2 model. However, regardless of the model, it is observed 
that the BS 16 is more likely to obtain better results and be 
applied in future works. 

B. Practical Segmentation Analysis 
The comparison in Fig. 8a allows exemplifying the origin 

of most of the losses in the metric, which is mostly located in 
the lower regions of the tone, such location is highlighted in 
red. This makes the stereology of the segmented lung volume 
different from the real one dictated by the GTs, i.e., a loss of 
white pixels in the segmented images. 

The segmented lung volume, Fig. 8b (2), respects the 
shape of the organ, even with the small differences. Analyzing 
the volumes, one can see some irregularities on the surface of 
the segmented lung, a characteristic not found in the real 
volume, see Fig. 8b (1). In some biomedical applications, the 
small amount of samples leads to low data volume. The 
trained models were successful in segmenting the images, 
even with the use of 2 of the original 60 data sets. 

  

Fig. 7. Heatmap containing the results of the paired Dunn test for models 
v1 and v2. It shows which pairs have a statistically significant difference. 
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Fig. 8. (a) comparative examples of segmentation done by the model (v2) with batch size equal to 16 and (b) lung volumes from the third patient, the upper 
one (1) coming from the GTs and the lower one (2) from the segmentations of the model used in (a). 

V. CONCLUSIONS 
From the results, it was possible to establish some aspects 

regarding the variability of U-Net. BS has a significant impact 
for model v2. The v1 model, despite not reaching statistical 
criteria, showed similar behavior to the v2 model. Increasing 
the levels slightly improved the results, raising hypotheses for 
future work involving networks with different levels. This 
perspective can be evaluated with other network parameters. 

Although adding levels has achieved a performance gain 
that is sensitive to statistical tests, there are other ways to 
achieve considerable gains. New architectures, such as 3D U-
Net [16], U-Net++ [45], U-Net 3+ [46] and ELU-Net [47], 
present a substantial gain through other non-trivial 
modifications and could be applied in future work. 

According to the analyses, BSs equal to 16 provided better 
results while reducing training time due to parallel processing. 
Thus, BSs equal to 16 are suitable for future biomedical 
research, and can be increased as the number of images for 
training increases.  

However, it is hoped to investigate the BS in combination 
with other parameters and features of the model, such as the 
learning rate or network levels. In [44] the authors showed the 
correlation between these parameters, but between different 
learning optimizers. 

REFERENCES 
[1] A. Owoyemi, J. Owoyemi, A. Osiyemi, and A. Boyd, “Artificial 

Intelligence for Healthcare in Africa,” Front Digit. Health, vol. 2, Jul. 
2020, doi: 10.3389/fdgth.2020.00006. 

[2] C. C. Onu, J. Lebensold, W. L. Hamilton, and D. Precup, “Neural 
Transfer Learning for Cry-Based Diagnosis of Perinatal Asphyxia,” in 

Interspeech 2019, Sep. 2019, pp. 3053–3057. doi: 
10.21437/Interspeech.2019-2340. 

[3] V. Bellemo et al., “Artificial intelligence using deep learning to screen 
for referable and vision-threatening diabetic retinopathy in Africa: a 
clinical validation study,” Lancet Digit. Health, vol. 1, no. 1, pp. e35–
e44, May 2019, doi: 10.1016/S2589-7500(19)30004-4. 

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 
521, no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539. 

[5] M. A. Wani, F. A. Bhat, S. Afzal, and A. I. Khan, Advances in Deep 
Learning, vol. 57. Singap.: Springer Singap., 2020. doi: 10.1007/978-
981-13-6794-6. 

[6] M. K. Santos, J. R. Ferreira Júnior, D. T. Wada, A. P. M. Tenório, M. 
H. Nogueira-Barbosa, and P. M. de A. Marques, “Artificial 
intelligence, machine learning, computer-aided diagnosis, and 
radiomics: advances in imaging towards to precision medicine,” 
Radiol. Bras., vol. 52, no. 6, pp. 387–396, Dec. 2019, doi: 
10.1590/0100-3984.2019.0049. 

[7] N. Shusharina et al., “Cross-Modality Brain Structures Image 
Segmentation for the Radiotherapy Target Definition and Plan 
Optimization,” in Segmentation, Classification, and Registration of 
Multi-modality Med. Imag. Data, Cham: Springer, 2021, pp. 3–15. doi: 
10.1007/978-3-030-71827-5_1. 

[8] P. Iassonov, T. Gebrenegus, and M. Tuller, “Segmentation of X-ray 
computed tomography images of porous materials: A crucial step for 
characterization and quantitative analysis of pore structures,” Water 
Resour. Res., vol. 45, no. 9, Sep. 2009, doi: 10.1029/2009WR008087. 

[9] A. Buratti, J. Bredemann, M. Pavan, R. Schmitt, and S. Carmignato, 
“Applications of CT for Dimensional Metrology,” in Industrial X-Ray 
Computed Tomography, Cham: Springer Int. Publishing, 2018, pp. 
333–369. doi: 10.1007/978-3-319-59573-3_9. 

[10] A. Alvarenga de Moura Meneses et al., “Automated segmentation of 
synchrotron radiation micro-computed tomography biomedical images 
using Graph Cuts and neural networks,” Nucl. Instrum. Methods Phys. 
Res. A, vol. 660, no. 1, pp. 121–129, Dec. 2011, doi: 
10.1016/j.nima.2011.08.007. 

[11] A. El-Baz, X. Jiang, and J. S. Suri, Biomedical Image Segmentation: 
Advances and Trends. 2016. 

E. Stefanato, V. Oliveira, C. Pinheiro, R. Barroso and A. Meneses,   
“Segmentation of Lung Tomographic Images Using U-Net”, 

Latin-American Journal of Computing (LAJC), vol. 10, no. 2, 2023. 
 

[12] A. A. de M. Meneses, D. B. Palheta, C. J. G. Pinheiro, and R. C. R. 
Barroso, “Graph cuts and neural networks for segmentation and 
porosity quantification in Synchrotron Radiation X-ray μCT of an 
igneous rock sample,” Appl. Radiat. and Isot., vol. 133, pp. 121–132, 
Mar. 2018, doi: 10.1016/j.apradiso.2017.12.019. 

[13] J. Yang et al., “Autosegmentation for thoracic radiation treatment 
planning: A grand challenge at AAPM 2017,” Med. Phys., vol. 45, no. 
10, pp. 4568–4581, Oct. 2018, doi: 10.1002/mp.13141. 

[14] M. K. Santos, J. R. Ferreira Júnior, D. T. Wada, A. P. M. Tenório, M. 
H. Nogueira-Barbosa, and P. M. de A. Marques, “Artificial 
intelligence, machine learning, computer-aided diagnosis, and 
radiomics: advances in imaging towards to precision medicine,” 
Radiol. Bras., vol. 52, no. 6, pp. 387–396, Dec. 2019, doi: 
10.1590/0100-3984.2019.0049. 

[15] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional 
Networks for Biomedical Image Segmentation,” in Med. Image 
Comput. and Computer-Assisted Intervention, Cham: Springer, 2015, 
pp. 234–241. doi: 10.1007/978-3-319-24574-4_28. 

[16] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. 
Ronneberger, “3D U-Net: Learning Dense Volumetric Segmentation 
from Sparse Annotation,” in Med. Image Comput. and Computer-
Assisted Intervention, Cham: Springer, 2016, pp. 424–432. doi: 
10.1007/978-3-319-46723-8_49. 

[17] J. C. González Sánchez, M. Magnusson, M. Sandborg, Å. Carlsson 
Tedgren, and A. Malusek, “Segmentation of bones in medical dual-
energy computed tomography volumes using the 3D U-Net,” Physica 
Medica, vol. 69, pp. 241–247, Jan. 2020, doi: 
10.1016/j.ejmp.2019.12.014. 

[18] X. Dong et al., “Automatic multiorgan segmentation in thorax CT 
images using U-net-GAN,” Med. Phys., vol. 46, no. 5, pp. 2157–2168, 
May 2019, doi: 10.1002/mp.13458. 

[19] P. F. Christ et al., “Automatic Liver and Lesion Segmentation in CT 
Using Cascaded Fully Convolutional Neural Networks and 3D 
Conditional Random Fields,” in Med. Image Comput. and Computer-
Assisted Intervention, Cham: Springer, 2016, pp. 415–423. doi: 
10.1007/978-3-319-46723-8_48. 

[20] K. Paiva et al., “Performance evaluation of segmentation methods for 
assessing the lens of the frog Thoropa miliaris from synchrotron-based 
phase-contrast micro-CT images,” Physica Medica, vol. 94, pp. 43–52, 
Feb. 2022, doi: 10.1016/j.ejmp.2021.12.013. 

[21] G. Sena et al., “Synchrotron X-ray biosample imaging: opportunities 
and challenges,” Biophys. Rev., vol. 14, no. 3, pp. 625–633, Jun. 2022, 
doi: 10.1007/s12551-022-00964-4. 

[22] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and 
D. Terzopoulos, “Image Segmentation Using Deep Learning: A 
Survey,” IEEE Trans. Pattern Anal. Mach. Intell., pp. 1–1, 2021, doi: 
10.1109/TPAMI.2021.3059968. 

[23] S. Ghosh, N. Das, I. Das, and U. Maulik, “Understanding Deep 
Learning Techniques for Image Segmentation,” ACM Comput. Surv., 
vol. 52, no. 4, pp. 1–35, Jul. 2020, doi: 10.1145/3329784. 

[24] C. Chen et al., “Deep Learning for Cardiac Image Segmentation: A 
Review,” Front Cardiovasc. Med., vol. 7, Mar. 2020, doi: 
10.3389/fcvm.2020.00025. 

[25] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based 
learning applied to document recognition,” Proc. of the IEEE, vol. 86, 
no. 11, pp. 2278–2324, 1998, doi: 10.1109/5.726791. 

[26] Francois Chollet, Deep Learning with Python, 2nd ed. 2021. 
[27] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning 

representations by back-propagating errors,” Nature, vol. 323, no. 
6088, pp. 533–536, Oct. 1986, doi: 10.1038/323533a0. 

[28] S. Wang, D. M. Yang, R. Rong, X. Zhan, and G. Xiao, “Pathology 
Image Analysis Using Segmentation Deep Learning Algorithms,” Am 
J Pathol, vol. 189, no. 9, pp. 1686–1698, Sep. 2019, doi: 
10.1016/j.ajpath.2019.05.007. 

[29] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, 
“Deep Learning for Computer Vision: A Brief Review,” Comput. 

Intell. Neurosci., vol. 2018, pp. 1–13, 2018, doi: 
10.1155/2018/7068349. 

[30] N. Siddique, S. Paheding, C. P. Elkin, and V. Devabhaktuni, “U-Net 
and Its Variants for Medical Image Segmentation: A Review of Theory 
and Applications,” IEEE Access, vol. 9, pp. 82031–82057, 2021, doi: 
10.1109/ACCESS.2021.3086020. 

[31] Y. Sha, D. J. Gagne II, G. West, and R. Stull, “Deep-Learning-Based 
Gridded Downscaling of Surface Meteorological Variables in Complex 
Terrain. Part I: Daily Maximum and Minimum 2-m Temperature,” J 
Appl. Meteorol. Climatol., vol. 59, no. 12, pp. 2057–2073, Dec. 2020, 
doi: 10.1175/JAMC-D-20-0057.1. 

[32] K. Clark et al., “The Cancer Imaging Archive (TCIA): Maintaining and 
Operating a Public Information Repository,” J Digit. Imaging, vol. 26, 
no. 6, pp. 1045–1057, Dec. 2013, doi: 10.1007/s10278-013-9622-7. 

[33] “Data from Lung CT Segmentation Challenge,” The Cancer Imaging 
Archive, May 2017. 

[34] J. Yang et al., “Autosegmentation for thoracic radiation treatment 
planning: A grand challenge at AAPM 2017,” Med. Phys., vol. 45, no. 
10, pp. 4568–4581, Oct. 2018, doi: 10.1002/mp.13141. 

[35] N. Vinod and E. H. Geoffrey, “Rectified Linear Units Improve 
Restricted Boltzmann Machines,” in ICML, Jan. 2010. 

[36] T. Hastie, J. Friedman, and R. Tibshirani, The Elements of Statistical 
Learning. New York, NY: Springer New York, 2001. doi: 10.1007/978-
0-387-21606-5. 

[37] T. J. Sorensen, A method of establishing groups of equal amplitude in 
plant sociology based on similarity of species content and its 
application to analyses of the vegetation on Danish commons. I 
kommission hos E. Munksgaard, 1948. 

[38] C. Sammut and G. I. Webb, Eds., Encyclopedia of Machine Learning. 
Springer Science & Business Media, 2011. 

[39] W. H. Kruskal and W. A. Wallis, “Use of Ranks in One-Criterion 
Variance Analysis,” J Am Stat. Assoc., vol. 47, no. 260, pp. 583–621, 
Dec. 1952, doi: 10.1080/01621459.1952.10483441. 

[40] O. J. Dunn, “Multiple Comparisons among Means,” J Am Stat. Assoc., 
vol. 56, no. 293, pp. 52–64, Mar. 1961, doi: 
10.1080/01621459.1961.10482090. 

[41] B. Acun, M. Murphy, X. Wang, J. Nie, C.-J. Wu, and K. Hazelwood, 
“Understanding Training Efficiency of Deep Learning 
Recommendation Models at Scale,” in 2021 IEEE International 
Symposium on High-Performance Computer Architecture (HPCA), 
Feb. 2021, pp. 802–814. doi: 10.1109/HPCA51647.2021.00072. 

[42] N. Kumari and B. S. Saini, “Fully Automatic Wheat Disease Detection 
System by Using Different CNN Models,” in Sentiment Anal. and Deep 
Learn. Advances in Intell. Syst. and Comput., Singap.: Springer 
Singap., 2023, pp. 351–365. doi: 10.1007/978-981-19-5443-6_26. 

[43] S. R. Nayak, D. R. Nayak, U. Sinha, V. Arora, and R. B. Pachori, “An 
Efficient Deep Learning Method for Detection of COVID-19 Infection 
Using Chest X-ray Images,” Diagnostics, vol. 13, no. 1, p. 131, Dec. 
2022, doi: 10.3390/diagnostics13010131. 

[44] I. Kandel and M. Castelli, “The effect of batch size on the 
generalizability of the convolutional neural networks on a 
histopathology dataset,” ICT Express, vol. 6, no. 4, pp. 312–315, Dec. 
2020, doi: 10.1016/j.icte.2020.04.010. 

[45] Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang, 
“UNet++: A Nested U-Net Architecture for Medical Image 
Segmentation,” in Deep Learn. in Med. Image Anal. and Multimodal 
Learn. for Clin. Decis. Support, Cham: Springer, 2018, pp. 3–11. doi: 
10.1007/978-3-030-00889-5_1. 

[46] H. Huang et al., "UNet 3+: A Full-Scale Connected UNet for Medical 
Image Segmentation," in ICASSP 2020 - 2020 IEEE Int. Conf. on 
Acoustics, Speech and Signal Process. (ICASSP), Barcelona, Spain, 
2020, pp. 1055-1059, doi: 10.1109/ICASSP40776.2020.9053405. 

[47] Y. Deng, Y. Hou, J. Yan, and D. Zeng, “ELU-Net: An Efficient and 
Lightweight U-Net for Medical Image Segmentation,” IEEE Access, 
vol. 10, pp. 35932–35941, 2022, doi: 
10.1109/ACCESS.2022.3163711.

 



ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2023116

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol X, Issue 2, July 2023
LA

T
IN

-A
M

E
R

IC
A

N
 J

O
U

R
N

A
L

 O
F

 C
O

M
P

U
T

IN
G

 (
L

A
JC

),
 V

o
l X

, I
ss

ue
 2

, J
ul

y 
20

23

DOI: 10.5281/zenodo.8071498
116

AUTHORS

Eduardo Destefani Stefanato - Graduated in Physics from 
the Federal University of Espírito Santo. Has extensive 
computational experience with Python and MicroPython 
programming language (Machine Learning and Data 
Analysis). Experience and focus in Experimental Physics, 
signal analysis and characterization, prototyping, sensor 
handling and scientific programming. Worked as a student 
researcher and technician at the Telecommunications 
Laboratory (LabTel), which is part of the Center for 
Research, Innovation and Development (CPID) funded 
by FAPES (Foundation for Support of Research and 
Innovation of Espírito Santo). He has contributions in the 
making of firmwares and prototypes of microcontrollers 
with sensors applied to health and magnetometry, 
involved with Deep Learning applied to CT (Computed 
Tomography) images and micro-Synchrotron radiation 
tomography (µTC-RS), from the Cancer Imaging Archive 
and the Elettra Synchrotron in Trieste/IT, respectively. 
Currently, he is linked to the post-graduation program at 
the Physics Institute of the University of São Paulo (IFUSP), 
inserted in the project "Terahertz Photonics for the Study 
of Quantum Materials" financed by CNPq.

Regina Cély Barroso is Full Professor in the Physics 
Institute at the Rio de Janeiro State Univerty, UERJ, in 
Brazil, since 1986. Currently, she is the coordinator of 
the Laboratory of Applied Physics in Biomedical and 
Environmental Sciences, Lab_FisMed/UERJ. Dr. Barroso 
earned her BS in Physics at UERJ, MS  and PhD in Nuclear 
Engineering from COPPE/Federal University of Rio de 
Janeiro in 1997. She published more than one hundred of 
papers in scientic journals and supersived more than thirty 
MS, PhD and postdoctor students. Her interests include 
the methodologies, instrumentation and applications of 
hard X-ray nanoprobes for quantitative three-dimensional 
imaging, propagation based phase contrast X-ray imaging, 
synchrotron based microtomography. Her research focus 
particularly on key applications of synchrotron X-ray on 
biomedical imaging.

Eduardo Stefanato

Regina Barroso

117

E
. S

te
fa

na
to

, V
. O

liv
ei

ra
, C

. P
in

he
iro

, R
. B

ar
ro

so
 a

nd
 A

. M
en

es
es

,  
“S

eg
m

en
ta

tio
n 

o
f L

un
g

 T
o

m
o

g
ra

p
hi

c 
Im

ag
es

 U
si

ng
 U

-N
et

 D
ee

p
 N

eu
ra

l N
et

w
o

rk
s”

,
La

tin
-A

m
er

ic
an

 J
o

ur
na

l o
f C

o
m

p
ut

in
g

 (
LA

JC
),

 v
o

l. 
10

, n
o.

 2
, 2

0
23

.

Vitor Souza Premoli Pinto de Oliveira - Degree in Physics 
at the Federal University of Espírito Santo - UFES. I have 
experience with the areas of Condensed Matter Physics and 
Electroacoustic and Piezoelectric Applications and Devices; 
and computational experience with Python programming 
language (Machine Learning and Deep Learning) by 
developing applications of Artificial Neural Networks 
(Deep ANNs) in imaging problems. I have knowledge of 
crystallography and structure of the minerals that compose 
the Sand and Silt fractions, as well as mineralogical 
quantification and x-ray diffraction techniques. Moreover, I 
have mastery in the use of piezoelectric sensors, through the 
project that had as theme the interaction between sensors 
and microcontrollers for making an electronic MIDI drum, 
where I used piezoelectric sensors as triggers controlled 
by an Arduino board. Nowadays, I am a master's student 
in Physics at the Physics Institute of the University of São 
Paulo (IFUSP), in the area of non-linear optics in photonic 
microdevices fabricated via laser writing technique.

Vitor Oliveira

Christiano Jorge Gomes Pinheiro – The Professor Christiano 
has a degree in Physics from Universidade Federal do Rio 
de Janeiro (2002), master's at Engenharia Nuclear from 
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa 
de Engenharia (2004) and doctorate at Engenharia Nuclear 
from Instituto Alberto Luiz Coimbra de Pós-Graduação e 
Pesquisa de Engenharia (2008). Has experience in Physics, 
focusing on Nuclear Disintegration and Radioactivity, acting 
on the following subjects: food irradiation, gamma radiation. 
He is currently Associate Professor III of the Department 
of Rural Engineering at the Federal University of Espírito 
Santo and is developing a project that seeks to associate 
histomorphometric parameters, derived from stereology, 
with statistics using artificial intelligence concepts, mainly 
for micro-Synchrotron radiation tomography (µTC-RS) and 
CT (Computed Tomography) images.

Christiano Pinheiro



ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2023118

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol X, Issue 2, July 2023
LA

T
IN

-A
M

E
R

IC
A

N
 J

O
U

R
N

A
L

 O
F

 C
O

M
P

U
T

IN
G

 (
L

A
JC

),
 V

o
l X

, I
ss

ue
 2

, J
ul

y 
20

23

DOI: 10.5281/zenodo.8071498
118

AUTHORS

119

E
. S

te
fa

na
to

, V
. O

liv
ei

ra
, C

. P
in

he
iro

, R
. B

ar
ro

so
 a

nd
 A

. M
en

es
es

,  
“S

eg
m

en
ta

tio
n 

o
f L

un
g

 T
o

m
o

g
ra

p
hi

c 
Im

ag
es

 U
si

ng
 U

-N
et

”,
La

tin
-A

m
er

ic
an

 J
o

ur
na

l o
f C

o
m

p
ut

in
g

 (
LA

JC
),

 v
o

l. 
10

, n
o.

 2
, 2

0
23

.

Anderson Alvarenga de Moura Meneses - Graduated in 
Physics from the Federal University of Rio de Janeiro (2000), 
in Brazil. Master (2005) and doctorate (2010) degrees in 
Nuclear Engineering from COPPE Institute, at the Federal 
University of Rio de Janeiro, with a fellowship at the Dalle 
Molle Institute for Artificial Intelligence (IDSIA, University 
of Lugano, Switzerland) in 2009. Specialist in Systems 
Analysis, Design and Management from Pontifical Catholic 
University, in Rio de Janeiro (2008). Associate Professor 
at the Federal University of Western Pará (UFOPA). Head 
of the Computational Intelligence Laboratory (LabIC/
UFOPA) since 2015. Leader of the Computational 
Intelligence and Optimization research group. Permanent 
member of the Postgraduate Program in Amazon Natural 
Resources (PPGRNA/UFOPA). Collaborating member of the 
Postgraduate Program in Society, Nature and Development 
(PPGSND/UFOPA). Researcher PQ2 granted by the 
Brazilian National Council for Scientific and Technological 
Development (CNPq/Brazil). Areas of interest: Nuclear 
Engineering (optimization of nuclear reactor fuel reload), 
Deep Learning (Time Series Prediction and Image 
Processing) and Energy (Artificial Intelligence applied to 
electrical energy consumption monitoring).

Anderson Meneses


