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Abstract—Fault classification in industrial processes is of 
paramount importance, as it allows the implementation of 
preventive and corrective measures before catastrophic failures 
occur, which can result in significant repair costs and production 
loss, for example. Therefore, the purpose of this study was to 
develop a classification model by merging the concepts of Decision 
Trees with Genetic Programming. To accomplish this, the proposed 
model randomly generates a set of decision trees using the adapted 
Tennessee Eastman dataset. The generation of these trees does not 
rely on classical construction logic; instead, they employ an 
approach where the structure and characteristics of the trees are 
randomly determined and adjusted throughout the evolutionary 
process. This approach enables a broader exploration of the search 
space and may lead to diverse solutions. The results obtained were 
moderate, largely due to the high number of target classes for 
classification (21 classes), resulting in the creation of complex trees. 
The average accuracy on the test data was 0.75, indicating the need 
to implement new alternatives and enhancements in the algorithm to 
improve the results. 

Keywords—decision trees, multiclass classification, fault 
detection, genetic programming 

I. INTRODUCTION 
Fault Classification Problems have been widely explored 

in various fields of engineering and science, being of utmost 
relevance for the detection and prevention of anomalies in 
systems and processes. Early fault detection plays a 
fundamental role in proactive maintenance and ensuring 
efficient and safe operations in complex and interconnected 
environments, such as industrial production systems, 
telecommunications networks, and transportation systems. 

In this context, fault classification involves the 
development of models and algorithms capable of identifying 
subtle patterns in data, distinguishing between normal 
situations and anomalous behaviors. Advanced machine 
learning and data mining techniques have been applied to 
address these challenges. 

Precise fault detection and classification not only reduce 
costs associated with unplanned downtime, but also contribute 
to process optimization and worker safety. 

To achieve this, models based on Machine Learning (ML) 
techniques can be used for fault classification. ML techniques 
are interesting because they emulate the human way of 
thinking and decision-making, analyze large datasets 
containing many features in a reasonable time, and can handle 
complex relationships between data, making them more 
accurate than human experts in some specific situations [1]. 

Given the above, decision trees are considered, a ML 
technique used for classification problems. The use of 
decision trees has proven to be a promising approach in the 
context of fault classification problems. Decision trees offer 
an intuitive and interpretable way to model complex patterns 
in data, allowing the identification of relevant features for the 
classification of different types of faults in industrial systems. 
Additionally, as highlighted by [2], the hierarchical nature of 
decision trees mirrors human decision-making processes, 
making them suitable for analyzing anomalous behaviors in 
interconnected systems. 

The application of decision trees for fault classification 
can also be enhanced with data preprocessing techniques, such 
as relevant feature selection. Thus, the use of decision trees 
offers a versatile and effective approach to address the 
challenges of fault detection and classification in complex 
systems. However, such algorithms often use a greedy 
strategy and tend to fall into local optima. Moreover, the 
recursive partitioning policy in the construction phase can 
result in datasets with low cardinality for the attribute 
selection process in deeper tree nodes, causing data 
overfitting. 

Furthermore, researchers have considered the application 
of evolutionary algorithms to induce decision trees, 
specifically through Genetic Programming (GP). GP is an 
evolutionary algorithm that evolves a set of individuals 
represented in the form of trees [3]. When GPs are applied to 
the induction of decision trees, it is possible to deal with 
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multiple attributes simultaneously, reducing the dependence 
on feature selection methods in preprocessing and still 
providing a global search strategy [4]. This is an interesting 
approach to be tested, given that in recent years, it is not 
common to find works that use evolutionary computation 
techniques to induce decision trees. 

Therefore, this work aims to build a multiclass 
classification algorithm based on decision trees induced by 
genetic programming, with the purpose of classifying faults in 
the adapted database of the Tennessee Eastman Process 
Simulation and analyzing its accuracy results. Experiments 
were conducted to assess the quality and complexity of the 
solutions found. The results obtained indicated that the model 
presents moderate results for fault classification in the chosen 
database and results in complex trees; therefore, new 
strategies need to be applied to the algorithm to achieve better 
results and performance. 

II. LITERATURE REVIEW 

A. Decision Trees 
Decision Trees are widely used algorithms in machine 

learning to solve classification and regression problems. Data 
is organized in a tree-like structure, wherein each inner node 
signifies a decision derived from a particular attribute, and 
each terminal node, or leaf, corresponds to either a 
classification label or a regression value [5]. 

One of the advantages of decision trees is their 
interpretability. Their representation, especially when viewed 
graphically, is easily understandable. One can follow the logic 
of each node and interpret it until reaching a leaf node, which 
indicates the class of the instance, for example. Additionally, 
decision trees have the ability to handle both numerical and 
categorical data. They can represent complex relationships 
between attributes and classes, making them suitable for 
modeling nonlinear data [6]. 

To evaluate a decision tree, the Misclassification Error 
criterion can be used [6]. In this criterion, the number of 
correct predictions is measured by comparing predicted 
outputs with true outputs, resulting in accuracy. Accuracy 
assesses the ratio of correctly classified examples to the total 
number of evaluated examples. Higher accuracy indicates a 
greater number of accurate predictions. 

B. Genetic Programming 
Genetic Programming (GP) is an artificial intelligence 

technique that uses principles inspired by biological evolution 
to evolve solutions for complex problems. In this approach, a 
set of random solutions is represented as genetic structures 
that can be combined and mutated over several generations, 
generating new individuals representing new solutions, with 
the aim of finding optimal or approximate solutions to a 
problem [3]. 

Genetic programming starts with an initial population of 
potential solutions (good or bad), known as individuals. In 
each generation, these individuals are evaluated based on a 
fitness function that quantifies how well they solve the given 
problem. Individuals with higher fitness are more likely to be 
selected for reproduction, where crossover (recombination) 
and mutation operations occur, similar to the processes of 
genetic evolution [3]. 

The genetic programming approach allows the exploration 
of a broad solution space in search of effective solutions for 
complex and multidimensional problems. It is applied in 
various fields, including optimization, machine learning, and 
modeling. 

C. Genetic Programming Applied to Decision Trees 
Genetic programming (GP) applied to decision trees 

represents an innovative approach in the field of artificial 
intelligence. In this paradigm, decision trees are portrayed as 
chromosomes, enabling the evolution of effective solutions 
for multiclass classification problems. [7] emphasizes that this 
genetic representation facilitates the application of 
evolutionary operators, such as crossover and mutation, to 
generate new generations of decision trees, allowing the 
discovery of novel and improved solutions to the addressed 
problem. 

The evolutionary process unfolds over iterations, where 
trees are selected for a reproduction pool, forming pairs that 
crossbreed to produce new individuals. Trees that are more 
adapted, as per a fitness function, have higher chances of 
being chosen for reproduction. This evolutionary approach 
aims to find decision trees that optimally fit the data patterns. 
Nguyen et al. [8] underscore the importance of a well-defined 
fitness function to efficiently guide the evolutionary process. 

The advantages of this approach include the ability to 
handle complex problems and the flexibility to evolve 
decision tree structures without the need for manual definition. 
However, challenges such as the potential uncontrolled 
growth of the tree (overfitting) need to be addressed. [9] 
discuss strategies, such as penalties in the fitness function, to 
mitigate these challenges and ensure more generalized 
solutions. 

In summary, genetic programming applied to decision 
trees offers a promising approach to solve multiclass 
classification problems, combining the flexibility of genetic 
evolution with the structured representation of decision trees. 
However, the careful selection of parameters and strategies to 
prevent overfitting is crucial in the development and 
implementation of this technique. 

III. METHODOLOGY 

A. Used Database 
The Tennessee Eastman Process Simulation database is 

widely recognized as a benchmark in the field of process 
engineering and fault detection. Developed by the Oak Ridge 
National Laboratory in the United States, this database was 
designed to allow the evaluation and comparison of fault 
detection, diagnosis, and prediction algorithms and methods 
in a simulated environment of a complex chemical process 
[10]. Researchers employ this dataset to test and compare 
anomaly detection algorithms, pattern identification, and 
diagnosis in a chemical process scenario, fostering 
advancements in the field [11]. 

In total, the original database has 55 columns, with 54 
input attributes and 1 output attribute. The column that 
presents the output attribute is called "faultNumber", 
representing the fault number, ranging from 0 to 21. This 
expresses a classification of 22 fault classes, where class 0 
means no fault, and the other classes (1 to 21) represent the 
fault classification number. 
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In the present study, a database derived from a fault 
detection model based on Qualitative Trend Analysis (QTA), 
proposed by [12], was used. This model adopts a two-step 
process for fault detection in the Tennessee Eastman database. 
The first step uses  the fuzzy set theory, while the second one 
relies on a Bayesian approach for detecting change points in 
time series, providing an indication of a possible fault. If this 
indication is established, the proposed model takes 
responsibility for identifying the specific nature of the fault. 

Additionally, 22 variables were eliminated from the 
dataset in two phases by [12]. In the first phase, a correlation 
matrix obtained from the 52 input variables in the author's 
used database was employed. Variables with a correlation 
below 0.6 were eliminated, resulting in a reduction of 15 
variables.  

In the second phase, 7 more variables that showed no 
indications of faults by the Fuzzy/Bayesian approach were 
discarded. In other words, in the calculation of the new 
probability vector for change points for these variables, no 
changes were detected. Consequently, the vectors were zeroed 
out, resulting in the variables having only zero values, which 
does not affect fault classification. 

Thus, 30 input variables were retained, which were used 
to train and test the classifier proposed in this work. 

In the end, the dataset proposed by [12] presented 4180 
instances, with 30 input attributes and 1 output attribute. In 
this sampling, all classes have 200 instances, except for 
classes 1, 9, 15, 19, 18, and 20, which have 199, 190, 198, 195, 
199, and 199 instances, respectively. 

B. Developed Algorithm 
Using the concepts of decision trees and genetic 

programming, a predictive model was developed using 
Python. Three classes were created in total: 'Node', which 
stores the nodes of the tree, 'DecisionTree', that represents the 
classification trees, and finally, the 'PG' class (Genetic 
Programming). This contains the genetic operators that create 
the tree population and evolve them with the aim of finding 
better solutions for the fault classification problem. 

When executed, the algorithm takes training parameters 
and the maximum number of iterations as inputs. It can also 
receive additional parameters such as the maximum depth of 
the trees, population size, crossover rate, mutation rate, 
elitism, the number of individuals participating in tournaments 
during the selection phase, and the number of split points for 
individuals during the crossover phase. 

The pseudocode of the developed algorithm can be seen in 
Fig. 1. 

 

Fig. 1. Developed algorithm 

In line 1 of the pseudocode, we have the first function to 
be called, which is GenerateInitialPop() that takes the training 
data as a parameter, aiming to generate the initial population 
randomly. 

After the initial population is formed, the algorithm enters 
a loop, which lasts for the specified number of generations. In 
each generation within the loop, the population goes through 
the Evaluation() function (line 4), which calculates the fitness 
level of each individual. Right after, the Selection() (line 5) 
occurs, to select individuals for the Crossover() phase (line 6) 
through tournaments, creating a new generation, where 
individuals may undergo the Mutation() process (line 7). After 
the new generation is formed, the Elitism() function (line 8) is 
called, with the goal of saving the best individual from the 
previous generation and placing it in the new generation. 
Finally, the current population is replaced by the new 
generation (line 9), and the current generation number is 
incremented (line 9). 

At the end of the loop, the final population found by the 
algorithm is returned (line 12), containing the last generation 
of individuals found by the model. From this, it is possible to 
select the best individual or individuals from this population 
to perform tests using test data, evaluating the test accuracy of 
the tree found, representing how well the tree performed in 
predicting fault classifications. 

C. Generation of The Initial Population 
The generation of the initial population is done through the 

GenerateInitialPop() function, which takes the training data 
as a parameter. In this function, a number of decision tree 
individuals equivalent to the user-specified number are 
created. 

The construction of a tree is based on the training input 
data (instances/input attributes) and output (fault class). From 
this, nodes are randomly generated, where the input attribute 
related to this node, the split threshold, and the data split 
operator are randomly chosen. The function also checks 
various stopping conditions, such as the maximum tree depth, 
the minimum number of samples for a split, and whether all 
samples belong to a single class. If the stopping condition is 
met, the next node to be generated will be a leaf node, 
representing a class to be predicted. 

Fig. 2 represents a decision tree generated by the function. 
In this example, it can be observed that the root node has the 
attribute 24 (equivalent to column 24 of the database) 
randomly selected, where the threshold was randomly chosen 
as 0.03, and the operator was <. When analyzing the set of 
training instances, if the value of column 24 of the instance is 
< 0.03, the instance proceeds to the left node; otherwise, it 
proceeds to the node on the right, and this process repeats until 
the instance reaches a leaf node, where the predicted class will 
be determined. 

 

Fig. 2. Example of generated decision tree. 
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D. Fitness Function 
To calculate the fitness of each decision tree in the 

population, the Misclassification Error criterion was used to 
measure the accuracy of the individual. This accuracy serves 
as its fitness. For this purpose, the CalculateFitness() function 
utilizes the training data, where the tree uses the input data to 
predict the outputs (fault classes). After the prediction, the 
predicted outputs are compared with the true outputs of the 
training data. In other words, it quantifies the ratio of correctly 
classified instances compared to the total instances in the 
dataset, providing an overall measure of the model accuracy 
in predicting the correct classess. This accuracy value is the 
fitness of the individual. This calculation is performed for 
each individual in the population. 

E. Selection and Crossover 
The selection operator chosen is tournament selection. In 

this method, there will be a number of tournaments equivalent 
to the size of the population. For each tournament, two 
individuals from the current population are randomly selected 
and compete against each other. The one with the higher 
fitness wins the tournament, and a copy of it is added to a list 
of winners. An individual may be drawn for competition more 
than once. Moreover, the number of competing individuals per 
tournament can be changed by the user. 

After the tournaments and the list of winners are complete, 
the individuals undergo crossover. In this phase, two random 
individuals are taken from the list of winners to undergo 
crossover. If the crossover probability is equal to or greater 
than the defined crossover rate, crossover occurs; otherwise, 
the function returns the two randomly selected individuals. If 
crossover occurs, the two individuals are fragmented at one or 
more random points, and these segments are exchanged 
between the individuals, generating two new offspring 
individuals, which are then returned by the function. The 
number of crossovers that occur is equivalent to half the 
population size. Each return from the crossover function (two 
resulting individuals) is added to the list of the new generation. 
Consequently, a new generation is formed. 

An example of a cross between two individuals can be 
seen in Fig. 3. In this example, in Individual 1, the node 
'Feature 9' was segmented from the individual. Meanwhile, in 
Individual 2, it was the 'Feature 2' node that underwent 
segmentation. Following the segmentation process, the 
individuals crossbreed, giving rise to two new children, thus 
exchanging segments between them. Consequently, 'Child 1' 
is a copy of 'Individual 1,' but it now includes the 'Feature 2' 
node where 'Feature 9' used to be. On the other hand, 'Child 2' 
is a copy of 'Individual 2,' but with the 'Feature 9' node now in 
the place of 'Feature 2.' These two new individuals represent 
fresh solutions to the problem. 

 

Fig. 3. Example of crossover between trees. 

F. Mutation 
In this phase, each individual in the new generation has the 

possibility of undergoing mutation. Observing the mutation 
rate defined by the user, if a randomly generated decimal 
number is greater than or equal to this rate, the individual 
undergoes mutation. In this process, a node of the tree is 
randomly selected, and its attribute, threshold, and split 
operator are randomly modified. If the selected node is a leaf 
node, the target class of that node is randomly modified among 
the possibilities, which range from 1 to 21. 

Fig. 4 illustrates an example of an individual that was 
selected for mutation. In this individual, the node 'Feature 9' 
was chosen and underwent changes. Previously, this node 
used input attribute 9, with a threshold of 0. After the 
mutation, this node now uses input attribute 7, with a threshold 
of 2.31, thus becoming the 'Feature 7' node. 

 

Fig. 4. Tree mutation example. 

G. Elitism 
After the new generation is formed, to prevent the loss of 

the best individual from the previous population, the elitism 
technique is applied. The individual with the lowest fitness in 
the new generation is replaced by the individual with the 
highest fitness from the current generation. This prevents the 
population from degrading rapidly in quality. 

IV. TESTS AND RESULTS 
After the algorithm implementation, tests were initiated. 

To achieve this, the database was divided using a stratified 
sampling strategy into training and testing sets, allocating 70% 
of the data for training and 30% for testing purposes. 
Additionally, the following parameters were defined: 

• Maximum tree depth: 100. 

• Number of generations: 1,000 generations. 

• Population size: 200 individuals. 

• Crossover rate: 0.9. 

• Mutation rate: 0.6. 
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• Elitism enabled. 

• Tournament selection (2 competing individuals). 

• Single-point crossover. 

With the above settings, 100 algorithm executions were 
performed, and the average of the obtained results was 
calculated. The results were: 

• Average run time: 02:54:41. 

• Average number of features used: 29.4. 

• Medium depth: 41.4. 

• Average number of nodes: 157. 

• Average training accuracy: 0.772. 

• Average test accuracy: 0.755. 

The Fig. 5 presents the average test accuracies for each 
class, with a standard deviation of 0.2682 in this case. It can 
be observed that the prediction for classes 3 and 9 had an 
average accuracy below 0.2, with class 9 being the worst 
predicted by the model. Additionally, classes 20 and 21 had 
averages lower than 0.6, and classes 4, 11, 13, 16, and 18 
achieved an average accuracy below 0.8. On the other hand, 
the remaining classes (12 in total) achieved accuracies higher 
than 0.8. 

 

Fig. 5. Average test accuracy by class 

Among the 10 tests conducted, the one with the best 
performance showed a training accuracy of 0.804 and a test 
accuracy of 0.799. Analyzing the Fig. 5 and the average of the 
results obtained, it is possible to notice that the average 
training accuracy obtained was 0.772, and the average test 
accuracy was 0.755, indicating these results as moderate. 
Regarding the average accuracy obtained per class, there were 
occurrences of extremely low accuracies, especially for 
classes 3 and 9, including accuracies equal to 0 in some of 
their executions, meaning that the resulting genetic algorithm 
made errors in all predicted classifications. On the other hand, 
12 out of the 21 classes achieved accuracies higher than 0.8, 
indicating promising results. 

V. CONCLUSIONS 
This work aimed to present an approach for fault detection 

and classification, evaluating its performance when applied to 
the Tennessee Eastman Process. Decision trees induced by 
genetic programming were used to build and train the 
predictive classification model. The results of this application 
were collected and analyzed. 

It is important to highlight that approaches based on 
decision trees can provide interpretable models, and the 
application of such models in the Tennessee Eastman Process 

has not been found in the previous literature. In this sense, this 
work stands as one of the first to use interpretable approaches 
in fault classification for the Tennessee Eastman Process 
dataset. 

Another point to be discussed concerns the reduction of 
input attributes. By default, the dataset has 30 such attributes, 
and in a few executions, the proposed model managed to 
reduce this quantity to a maximum of 28 attributes. Although 
there was a reduction in some tests, this number is not 
significant or consistent. 

Despite decision trees being simple models to understand 
and interpret, as their decisions are represented in a 
hierarchical structure that is easily comprehensible, 
facilitating explanations to non-technical users, the 
interpretability of the trees obtained by the model was 
hindered by their size. The trees had an average depth of 41.4 
and an average number of nodes of 157. In light of these 
results, it identifies a greater difficulty in interpreting the 
resulting trees due to their size. Such size is also due to the 
complexity of the 21-class fault classification problem, which 
is an extensive issue. 

Through the aforementioned ideas, it is concluded that, 
despite the model not achieving satisfactory results for all 
classes, a good part of the classes was predicted reasonably or 
adequately. Moreover, it is the first study that uses an 
interpretable model applied to the Tennessee Eastman dataset. 
However, the model needs changes and refinements for better 
results. 

For future work, it is necessary to apply optimization 
techniques to improve the algorithm performance, aiming to 
reduce its execution time. Additionally, implementing 
functionalities and strategies that make the trees more 
interpretable and provide better accuracy results is crucial. 
The intention is to apply niche techniques, specifically fitness 
sharing based on Hamming distance, to increase the 
population diversity, and implement pruning techniques to 
reduce the size of the trees and make them more interpretable. 
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