
60

R
. R

o
ch

a,
 L

. S
an

to
s,

 R
. S

o
ar

es
, F

. B
ar

b
o

sa
 a

nd
 M

. D
'A

ng
el

o
,

“C
la

ss
ifi

ca
ti

o
n

o
f

F
ai

lu
re

 U
si

ng
 D

ec
is

io
n

Tr
ee

s
In

d
uc

ed
 b

y
G

en
et

ic
 P

ro
g

ra
m

m
in

g
”,

La
ti

n-
A

m
er

ic
an

 J
o

ur
na

l o
f

C
o

m
p

ut
in

g
 (

L
A

JC
),

 v
o

l.
11

, n
o

. 2
, 2

0
24

.

Classification of Failure
Using Decision Trees
Induced by Genetic

Programming

ARTICLE HISTORY

Received 2 January 2024
Accepted 19 April 2024

Rogério Costa Negro Rocha
Graduate Program in Computational Modeling and Systems
State University of Montes Claros
Montes Claros, Brazil
rogeriocostanegro@hotmail.com
ORCID: 0009-0002-4667-9656

Laércio Ives Santos
Campus Montes Claros Federal Institute of Norte de Minas
Gerais
Montes Claros, Brazil
laercio.ives@gmail.com
ORCID: 0000-0001-6504-7692

Rafael Almeida Soares
Graduate Program in Computational Modeling and Systems
State University of Montes Claros
Montes Claros, Brazil
rafael.almeida.soares2012@gmail.com
ORCID: 0009-0006-5544-9798

Franciele Alves Barbosa
Graduate Program in Computational Modeling and Systems
State University of Montes Claros
Montes Claros, Brazil
francielealvesb10@gmail.com
ORCID: 0009-0005-3964-7391

Marcos Flávio Silveira Vasconcelos D'Angelo
Departament of Computer Science State University of Montes
Claros
Montes Claros, Brazil
marcos.dangelo@unimontes.br
ORCID: 0000-0001-5754-3397

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2024

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2024 61
DOI:

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
I,

Is
su

e
2,

 J
ul

y
20

24

10.5281/zenodo.12192085

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol XI, Issue 2, July 2024

Classification of Failure Using Decision Trees
Induced by Genetic Programming

1st Rogério Costa Negro Rocha

Graduate Program in Computational
Modeling and Systems

State University of Montes Claros
Montes Claros, Brazil

rogeriocostanegro@hotmail.com
ORCID: 0009-0002-4667-9656

4th Franciele Alves Barbosa
Graduate Program in Computational

Modeling and Systems
State University of Montes Claros

Montes Claros, Brazil
francielealvesb10@gmail.com
ORCID: 0009-0005-3964-7391

 2nd Laércio Ives Santos
Campus Montes Claros

Federal Institute of Norte de Minas
Gerais

Montes Claros, Brazil
laercio.ives@gmail.com

ORCID: 0000-0001-6504-7692

5th Marcos Flávio Silveira Vasconcelos
D'Angelo

Departament of Computer Science
State University of Montes Claros

Montes Claros, Brazil
marcos.dangelo@unimontes.br
ORCID: 0000-0001-5754-3397

3rd Rafael Almeida Soares
Graduate Program in Computational

Modeling and Systems
State University of Montes Claros

Montes Claros, Brazil
rafael.almeida.soares2012@gmail.com

ORCID: 0009-0006-5544-9798

Abstract—Fault classification in industrial processes is of
paramount importance, as it allows the implementation of
preventive and corrective measures before catastrophic failures
occur, which can result in significant repair costs and production
loss, for example. Therefore, the purpose of this study was to
develop a classification model by merging the concepts of Decision
Trees with Genetic Programming. To accomplish this, the proposed
model randomly generates a set of decision trees using the adapted
Tennessee Eastman dataset. The generation of these trees does not
rely on classical construction logic; instead, they employ an
approach where the structure and characteristics of the trees are
randomly determined and adjusted throughout the evolutionary
process. This approach enables a broader exploration of the search
space and may lead to diverse solutions. The results obtained were
moderate, largely due to the high number of target classes for
classification (21 classes), resulting in the creation of complex trees.
The average accuracy on the test data was 0.75, indicating the need
to implement new alternatives and enhancements in the algorithm to
improve the results.

Keywords—decision trees, multiclass classification, fault
detection, genetic programming

I. INTRODUCTION
Fault Classification Problems have been widely explored

in various fields of engineering and science, being of utmost
relevance for the detection and prevention of anomalies in
systems and processes. Early fault detection plays a
fundamental role in proactive maintenance and ensuring
efficient and safe operations in complex and interconnected
environments, such as industrial production systems,
telecommunications networks, and transportation systems.

In this context, fault classification involves the
development of models and algorithms capable of identifying
subtle patterns in data, distinguishing between normal
situations and anomalous behaviors. Advanced machine
learning and data mining techniques have been applied to
address these challenges.

Precise fault detection and classification not only reduce
costs associated with unplanned downtime, but also contribute
to process optimization and worker safety.

To achieve this, models based on Machine Learning (ML)
techniques can be used for fault classification. ML techniques
are interesting because they emulate the human way of
thinking and decision-making, analyze large datasets
containing many features in a reasonable time, and can handle
complex relationships between data, making them more
accurate than human experts in some specific situations [1].

Given the above, decision trees are considered, a ML
technique used for classification problems. The use of
decision trees has proven to be a promising approach in the
context of fault classification problems. Decision trees offer
an intuitive and interpretable way to model complex patterns
in data, allowing the identification of relevant features for the
classification of different types of faults in industrial systems.
Additionally, as highlighted by [2], the hierarchical nature of
decision trees mirrors human decision-making processes,
making them suitable for analyzing anomalous behaviors in
interconnected systems.

The application of decision trees for fault classification
can also be enhanced with data preprocessing techniques, such
as relevant feature selection. Thus, the use of decision trees
offers a versatile and effective approach to address the
challenges of fault detection and classification in complex
systems. However, such algorithms often use a greedy
strategy and tend to fall into local optima. Moreover, the
recursive partitioning policy in the construction phase can
result in datasets with low cardinality for the attribute
selection process in deeper tree nodes, causing data
overfitting.

Furthermore, researchers have considered the application
of evolutionary algorithms to induce decision trees,
specifically through Genetic Programming (GP). GP is an
evolutionary algorithm that evolves a set of individuals
represented in the form of trees [3]. When GPs are applied to
the induction of decision trees, it is possible to deal with

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2024 62
DOI:

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
I,

Is
su

e
2,

 J
ul

y
20

24

10.5281/zenodo.12192085

R. Rocha, L. Santos, R. Soares, F. Barbosa and M. D’Angelo,
“Classification of Failure Using Decision Trees Induced by Genetic Programming”,

Latin-American Journal of Computing (LAJC), vol. 11, no. 2, 2024.

multiple attributes simultaneously, reducing the dependence
on feature selection methods in preprocessing and still
providing a global search strategy [4]. This is an interesting
approach to be tested, given that in recent years, it is not
common to find works that use evolutionary computation
techniques to induce decision trees.

Therefore, this work aims to build a multiclass
classification algorithm based on decision trees induced by
genetic programming, with the purpose of classifying faults in
the adapted database of the Tennessee Eastman Process
Simulation and analyzing its accuracy results. Experiments
were conducted to assess the quality and complexity of the
solutions found. The results obtained indicated that the model
presents moderate results for fault classification in the chosen
database and results in complex trees; therefore, new
strategies need to be applied to the algorithm to achieve better
results and performance.

II. LITERATURE REVIEW

A. Decision Trees
Decision Trees are widely used algorithms in machine

learning to solve classification and regression problems. Data
is organized in a tree-like structure, wherein each inner node
signifies a decision derived from a particular attribute, and
each terminal node, or leaf, corresponds to either a
classification label or a regression value [5].

One of the advantages of decision trees is their
interpretability. Their representation, especially when viewed
graphically, is easily understandable. One can follow the logic
of each node and interpret it until reaching a leaf node, which
indicates the class of the instance, for example. Additionally,
decision trees have the ability to handle both numerical and
categorical data. They can represent complex relationships
between attributes and classes, making them suitable for
modeling nonlinear data [6].

To evaluate a decision tree, the Misclassification Error
criterion can be used [6]. In this criterion, the number of
correct predictions is measured by comparing predicted
outputs with true outputs, resulting in accuracy. Accuracy
assesses the ratio of correctly classified examples to the total
number of evaluated examples. Higher accuracy indicates a
greater number of accurate predictions.

B. Genetic Programming
Genetic Programming (GP) is an artificial intelligence

technique that uses principles inspired by biological evolution
to evolve solutions for complex problems. In this approach, a
set of random solutions is represented as genetic structures
that can be combined and mutated over several generations,
generating new individuals representing new solutions, with
the aim of finding optimal or approximate solutions to a
problem [3].

Genetic programming starts with an initial population of
potential solutions (good or bad), known as individuals. In
each generation, these individuals are evaluated based on a
fitness function that quantifies how well they solve the given
problem. Individuals with higher fitness are more likely to be
selected for reproduction, where crossover (recombination)
and mutation operations occur, similar to the processes of
genetic evolution [3].

The genetic programming approach allows the exploration
of a broad solution space in search of effective solutions for
complex and multidimensional problems. It is applied in
various fields, including optimization, machine learning, and
modeling.

C. Genetic Programming Applied to Decision Trees
Genetic programming (GP) applied to decision trees

represents an innovative approach in the field of artificial
intelligence. In this paradigm, decision trees are portrayed as
chromosomes, enabling the evolution of effective solutions
for multiclass classification problems. [7] emphasizes that this
genetic representation facilitates the application of
evolutionary operators, such as crossover and mutation, to
generate new generations of decision trees, allowing the
discovery of novel and improved solutions to the addressed
problem.

The evolutionary process unfolds over iterations, where
trees are selected for a reproduction pool, forming pairs that
crossbreed to produce new individuals. Trees that are more
adapted, as per a fitness function, have higher chances of
being chosen for reproduction. This evolutionary approach
aims to find decision trees that optimally fit the data patterns.
Nguyen et al. [8] underscore the importance of a well-defined
fitness function to efficiently guide the evolutionary process.

The advantages of this approach include the ability to
handle complex problems and the flexibility to evolve
decision tree structures without the need for manual definition.
However, challenges such as the potential uncontrolled
growth of the tree (overfitting) need to be addressed. [9]
discuss strategies, such as penalties in the fitness function, to
mitigate these challenges and ensure more generalized
solutions.

In summary, genetic programming applied to decision
trees offers a promising approach to solve multiclass
classification problems, combining the flexibility of genetic
evolution with the structured representation of decision trees.
However, the careful selection of parameters and strategies to
prevent overfitting is crucial in the development and
implementation of this technique.

III. METHODOLOGY

A. Used Database
The Tennessee Eastman Process Simulation database is

widely recognized as a benchmark in the field of process
engineering and fault detection. Developed by the Oak Ridge
National Laboratory in the United States, this database was
designed to allow the evaluation and comparison of fault
detection, diagnosis, and prediction algorithms and methods
in a simulated environment of a complex chemical process
[10]. Researchers employ this dataset to test and compare
anomaly detection algorithms, pattern identification, and
diagnosis in a chemical process scenario, fostering
advancements in the field [11].

In total, the original database has 55 columns, with 54
input attributes and 1 output attribute. The column that
presents the output attribute is called "faultNumber",
representing the fault number, ranging from 0 to 21. This
expresses a classification of 22 fault classes, where class 0
means no fault, and the other classes (1 to 21) represent the
fault classification number.

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2024 63
DOI:

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
I,

Is
su

e
2,

 J
ul

y
20

24

10.5281/zenodo.12192085

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol XI, Issue 2, July 2024

In the present study, a database derived from a fault
detection model based on Qualitative Trend Analysis (QTA),
proposed by [12], was used. This model adopts a two-step
process for fault detection in the Tennessee Eastman database.
The first step uses the fuzzy set theory, while the second one
relies on a Bayesian approach for detecting change points in
time series, providing an indication of a possible fault. If this
indication is established, the proposed model takes
responsibility for identifying the specific nature of the fault.

Additionally, 22 variables were eliminated from the
dataset in two phases by [12]. In the first phase, a correlation
matrix obtained from the 52 input variables in the author's
used database was employed. Variables with a correlation
below 0.6 were eliminated, resulting in a reduction of 15
variables.

In the second phase, 7 more variables that showed no
indications of faults by the Fuzzy/Bayesian approach were
discarded. In other words, in the calculation of the new
probability vector for change points for these variables, no
changes were detected. Consequently, the vectors were zeroed
out, resulting in the variables having only zero values, which
does not affect fault classification.

Thus, 30 input variables were retained, which were used
to train and test the classifier proposed in this work.

In the end, the dataset proposed by [12] presented 4180
instances, with 30 input attributes and 1 output attribute. In
this sampling, all classes have 200 instances, except for
classes 1, 9, 15, 19, 18, and 20, which have 199, 190, 198, 195,
199, and 199 instances, respectively.

B. Developed Algorithm
Using the concepts of decision trees and genetic

programming, a predictive model was developed using
Python. Three classes were created in total: 'Node', which
stores the nodes of the tree, 'DecisionTree', that represents the
classification trees, and finally, the 'PG' class (Genetic
Programming). This contains the genetic operators that create
the tree population and evolve them with the aim of finding
better solutions for the fault classification problem.

When executed, the algorithm takes training parameters
and the maximum number of iterations as inputs. It can also
receive additional parameters such as the maximum depth of
the trees, population size, crossover rate, mutation rate,
elitism, the number of individuals participating in tournaments
during the selection phase, and the number of split points for
individuals during the crossover phase.

The pseudocode of the developed algorithm can be seen in
Fig. 1.

Fig. 1. Developed algorithm

In line 1 of the pseudocode, we have the first function to
be called, which is GenerateInitialPop() that takes the training
data as a parameter, aiming to generate the initial population
randomly.

After the initial population is formed, the algorithm enters
a loop, which lasts for the specified number of generations. In
each generation within the loop, the population goes through
the Evaluation() function (line 4), which calculates the fitness
level of each individual. Right after, the Selection() (line 5)
occurs, to select individuals for the Crossover() phase (line 6)
through tournaments, creating a new generation, where
individuals may undergo the Mutation() process (line 7). After
the new generation is formed, the Elitism() function (line 8) is
called, with the goal of saving the best individual from the
previous generation and placing it in the new generation.
Finally, the current population is replaced by the new
generation (line 9), and the current generation number is
incremented (line 9).

At the end of the loop, the final population found by the
algorithm is returned (line 12), containing the last generation
of individuals found by the model. From this, it is possible to
select the best individual or individuals from this population
to perform tests using test data, evaluating the test accuracy of
the tree found, representing how well the tree performed in
predicting fault classifications.

C. Generation of The Initial Population
The generation of the initial population is done through the

GenerateInitialPop() function, which takes the training data
as a parameter. In this function, a number of decision tree
individuals equivalent to the user-specified number are
created.

The construction of a tree is based on the training input
data (instances/input attributes) and output (fault class). From
this, nodes are randomly generated, where the input attribute
related to this node, the split threshold, and the data split
operator are randomly chosen. The function also checks
various stopping conditions, such as the maximum tree depth,
the minimum number of samples for a split, and whether all
samples belong to a single class. If the stopping condition is
met, the next node to be generated will be a leaf node,
representing a class to be predicted.

Fig. 2 represents a decision tree generated by the function.
In this example, it can be observed that the root node has the
attribute 24 (equivalent to column 24 of the database)
randomly selected, where the threshold was randomly chosen
as 0.03, and the operator was <. When analyzing the set of
training instances, if the value of column 24 of the instance is
< 0.03, the instance proceeds to the left node; otherwise, it
proceeds to the node on the right, and this process repeats until
the instance reaches a leaf node, where the predicted class will
be determined.

Fig. 2. Example of generated decision tree.

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2024 64
DOI:

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
I,

Is
su

e
2,

 J
ul

y
20

24

10.5281/zenodo.12192085

R. Rocha, L. Santos, R. Soares, F. Barbosa and M. D’Angelo,
“Classification of Failure Using Decision Trees Induced by Genetic Programming”,

Latin-American Journal of Computing (LAJC), vol. 11, no. 2, 2024.

D. Fitness Function
To calculate the fitness of each decision tree in the

population, the Misclassification Error criterion was used to
measure the accuracy of the individual. This accuracy serves
as its fitness. For this purpose, the CalculateFitness() function
utilizes the training data, where the tree uses the input data to
predict the outputs (fault classes). After the prediction, the
predicted outputs are compared with the true outputs of the
training data. In other words, it quantifies the ratio of correctly
classified instances compared to the total instances in the
dataset, providing an overall measure of the model accuracy
in predicting the correct classess. This accuracy value is the
fitness of the individual. This calculation is performed for
each individual in the population.

E. Selection and Crossover
The selection operator chosen is tournament selection. In

this method, there will be a number of tournaments equivalent
to the size of the population. For each tournament, two
individuals from the current population are randomly selected
and compete against each other. The one with the higher
fitness wins the tournament, and a copy of it is added to a list
of winners. An individual may be drawn for competition more
than once. Moreover, the number of competing individuals per
tournament can be changed by the user.

After the tournaments and the list of winners are complete,
the individuals undergo crossover. In this phase, two random
individuals are taken from the list of winners to undergo
crossover. If the crossover probability is equal to or greater
than the defined crossover rate, crossover occurs; otherwise,
the function returns the two randomly selected individuals. If
crossover occurs, the two individuals are fragmented at one or
more random points, and these segments are exchanged
between the individuals, generating two new offspring
individuals, which are then returned by the function. The
number of crossovers that occur is equivalent to half the
population size. Each return from the crossover function (two
resulting individuals) is added to the list of the new generation.
Consequently, a new generation is formed.

An example of a cross between two individuals can be
seen in Fig. 3. In this example, in Individual 1, the node
'Feature 9' was segmented from the individual. Meanwhile, in
Individual 2, it was the 'Feature 2' node that underwent
segmentation. Following the segmentation process, the
individuals crossbreed, giving rise to two new children, thus
exchanging segments between them. Consequently, 'Child 1'
is a copy of 'Individual 1,' but it now includes the 'Feature 2'
node where 'Feature 9' used to be. On the other hand, 'Child 2'
is a copy of 'Individual 2,' but with the 'Feature 9' node now in
the place of 'Feature 2.' These two new individuals represent
fresh solutions to the problem.

Fig. 3. Example of crossover between trees.

F. Mutation
In this phase, each individual in the new generation has the

possibility of undergoing mutation. Observing the mutation
rate defined by the user, if a randomly generated decimal
number is greater than or equal to this rate, the individual
undergoes mutation. In this process, a node of the tree is
randomly selected, and its attribute, threshold, and split
operator are randomly modified. If the selected node is a leaf
node, the target class of that node is randomly modified among
the possibilities, which range from 1 to 21.

Fig. 4 illustrates an example of an individual that was
selected for mutation. In this individual, the node 'Feature 9'
was chosen and underwent changes. Previously, this node
used input attribute 9, with a threshold of 0. After the
mutation, this node now uses input attribute 7, with a threshold
of 2.31, thus becoming the 'Feature 7' node.

Fig. 4. Tree mutation example.

G. Elitism
After the new generation is formed, to prevent the loss of

the best individual from the previous population, the elitism
technique is applied. The individual with the lowest fitness in
the new generation is replaced by the individual with the
highest fitness from the current generation. This prevents the
population from degrading rapidly in quality.

IV. TESTS AND RESULTS
After the algorithm implementation, tests were initiated.

To achieve this, the database was divided using a stratified
sampling strategy into training and testing sets, allocating 70%
of the data for training and 30% for testing purposes.
Additionally, the following parameters were defined:

• Maximum tree depth: 100.

• Number of generations: 1,000 generations.

• Population size: 200 individuals.

• Crossover rate: 0.9.

• Mutation rate: 0.6.

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2024 65
DOI:

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
I,

Is
su

e
2,

 J
ul

y
20

24

10.5281/zenodo.12192085

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol XI, Issue 2, July 2024

• Elitism enabled.

• Tournament selection (2 competing individuals).

• Single-point crossover.

With the above settings, 100 algorithm executions were
performed, and the average of the obtained results was
calculated. The results were:

• Average run time: 02:54:41.

• Average number of features used: 29.4.

• Medium depth: 41.4.

• Average number of nodes: 157.

• Average training accuracy: 0.772.

• Average test accuracy: 0.755.

The Fig. 5 presents the average test accuracies for each
class, with a standard deviation of 0.2682 in this case. It can
be observed that the prediction for classes 3 and 9 had an
average accuracy below 0.2, with class 9 being the worst
predicted by the model. Additionally, classes 20 and 21 had
averages lower than 0.6, and classes 4, 11, 13, 16, and 18
achieved an average accuracy below 0.8. On the other hand,
the remaining classes (12 in total) achieved accuracies higher
than 0.8.

Fig. 5. Average test accuracy by class

Among the 10 tests conducted, the one with the best
performance showed a training accuracy of 0.804 and a test
accuracy of 0.799. Analyzing the Fig. 5 and the average of the
results obtained, it is possible to notice that the average
training accuracy obtained was 0.772, and the average test
accuracy was 0.755, indicating these results as moderate.
Regarding the average accuracy obtained per class, there were
occurrences of extremely low accuracies, especially for
classes 3 and 9, including accuracies equal to 0 in some of
their executions, meaning that the resulting genetic algorithm
made errors in all predicted classifications. On the other hand,
12 out of the 21 classes achieved accuracies higher than 0.8,
indicating promising results.

V. CONCLUSIONS
This work aimed to present an approach for fault detection

and classification, evaluating its performance when applied to
the Tennessee Eastman Process. Decision trees induced by
genetic programming were used to build and train the
predictive classification model. The results of this application
were collected and analyzed.

It is important to highlight that approaches based on
decision trees can provide interpretable models, and the
application of such models in the Tennessee Eastman Process

has not been found in the previous literature. In this sense, this
work stands as one of the first to use interpretable approaches
in fault classification for the Tennessee Eastman Process
dataset.

Another point to be discussed concerns the reduction of
input attributes. By default, the dataset has 30 such attributes,
and in a few executions, the proposed model managed to
reduce this quantity to a maximum of 28 attributes. Although
there was a reduction in some tests, this number is not
significant or consistent.

Despite decision trees being simple models to understand
and interpret, as their decisions are represented in a
hierarchical structure that is easily comprehensible,
facilitating explanations to non-technical users, the
interpretability of the trees obtained by the model was
hindered by their size. The trees had an average depth of 41.4
and an average number of nodes of 157. In light of these
results, it identifies a greater difficulty in interpreting the
resulting trees due to their size. Such size is also due to the
complexity of the 21-class fault classification problem, which
is an extensive issue.

Through the aforementioned ideas, it is concluded that,
despite the model not achieving satisfactory results for all
classes, a good part of the classes was predicted reasonably or
adequately. Moreover, it is the first study that uses an
interpretable model applied to the Tennessee Eastman dataset.
However, the model needs changes and refinements for better
results.

For future work, it is necessary to apply optimization
techniques to improve the algorithm performance, aiming to
reduce its execution time. Additionally, implementing
functionalities and strategies that make the trees more
interpretable and provide better accuracy results is crucial.
The intention is to apply niche techniques, specifically fitness
sharing based on Hamming distance, to increase the
population diversity, and implement pruning techniques to
reduce the size of the trees and make them more interpretable.

REFERENCES

[1] A. Rajkomar, J. Dean, e I. Kohane, “Machine Learning in Medicine,”
New England Journal of Medicine, vol. 380, no. 14, pp. 1347-1358,
Abr. 2019.

[2] E. F. Brown et al., “Hierarchical decision trees for anomaly detection
in interconnected systems,” in Proceedings of the International
Conference on Industrial Engineering, pp. 126–132, 2020.

[3] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

[4] R. K. DeLisle and S. L. Dixon, “Induction of decision trees via
evolutionary programming,” Journal of Chemical Information and
Computer Sciences, vol. 44, no. 3, pp. 862–870, 2004.

[5] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,
Classification and Regression Trees. Chapman & Hall, 1984.

[6] A. Silva, T. Killian, I. D. Jimenez Rodriguez, S. Son, e M. Gombolay,
“Optimization Methods for Interpretable Differentiable Decision Trees
in Reinforcement Learning,” arXiv, 2019.

[7] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1985.

[8] Q. U. Nguyen, M. Zhang, K. Zhang, and S. Li, “Evolutionary
construction of decision trees for multiclass classification,” IEEE
Transactions on Evolutionary Computation, vol. 19, no. 6, pp. 822–
834, 2015.

[9] N. Javed, F. Gobet, e P. Lane, “Simplification of genetic
programs: a literature survey,”

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2024 66
DOI:

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
I,

Is
su

e
2,

 J
ul

y
20

24

10.5281/zenodo.12192085

R. Rocha, L. Santos, R. Soares, F. Barbosa and M. D’Angelo,
“Classification of Failure Using Decision Trees Induced by Genetic Programming”,

Latin-American Journal of Computing (LAJC), vol. 11, no. 2, 2024.

[10] R. W. J. Westerhout, F. J. J. Verhagen, and P. M. J. van den Hof,
“Monitoring and diagnosis of industrial processes using chemomet- ric
techniques,” Computers & Chemical Engineering, vol. 27, no. 9, pp.
1259–1273, 2003.

[11] P. Wang and H. Wang, “A review of data-driven approaches for
process systems fault detection and diagnosis,” Computers & Chemical
Engi- neering, vol. 94, pp. 188–200, 2016.

[12] M. F. D’Angelo, R. M. Palhares, R. H. Takahashi, and R. H. Loschi,
“Fuzzy/bayesian change point detection approach to incipient fault
detection,” Control Theory & Applications, IET, vol. 5, pp. 539–551,
2011

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2024 67

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
I,

Is
su

e
2,

 J
ul

y
20

24 AUTHORS

Rogério Costa Negro Rocha graduated with a Bachelor's degree in
Information Systems in 2021 from the Federal Institute of Northern
Minas Gerais, Salinas Campus. Currently, he is pursuing a Stricto
Sensu Graduate Program in Computational Modeling and Systems
at the State University of Montes Claros – UNIMONTES, Brazil, with
an expected completion date by November 2024. He has prior
experience in software development, web development, and mobile
development, particularly focusing on systems tailored for enterprise
and industrial management, as well as retail management and
e-commerce projects. Additionally, he has worked on projects in the
field of photometry, following agile Scrum methodologies. Moreover,
he has academic experience in machine learning, natural computing,
and evolutionary computation. His interests encompass software and
mobile development, utilizing Java and Dart; web development with
PHP, HTML, CSS, and JavaScript; evolutionary computing, leveraging
Python, particularly employing genetic algorithms and genetic
programming for resource allocation and optimization problems; and
pattern recognition in images using Convolutional Neural Networks,
also utilizing Python.

Laércio Ives Santos graduated in Information Systems in 2008,
obtained a Master's degree in Computational Modeling and Systems,
and a Doctorate in Health Sciences in 2021, all from the State
University of Montes Claros - UNIMONTES. Currently, he is a professor
at the Federal Institute of Education, Science, and Technology
of Northern Minas Gerais, in Montes Claros, mainly teaching in the
courses of Computer Science, Information Technology, and Electrical
Engineering. His main disciplines include: Database, Computer
Programming, Artificial Intelligence, and Natural Computing. He has
been a Visiting Professor in the Computational Modeling Program
at UNIMONTES since 2022. His experience includes research using
Machine Learning and Artificial Intelligence techniques for diagnosing
engine and process failures, as well as predicting events related to the
medical field. His areas of interest include: Evolutionary Computing,
Swarm Intelligence, Artificial Neural Networks, ensemble learning, as
well as relational and NoSQL databases, and software development in
languages such as Python, MATLAB, and JavaScript.

Rogério Costa Negro Rocha

Laércio Ives Santos

R
. R

o
ch

a,
 L

. S
an

to
s,

 R
. S

o
ar

es
, F

. B
ar

b
o

sa
 a

nd
 M

. D
'A

ng
el

o,

“C
la

ss
ifi

ca
tio

n
o

f F
ai

lu
re

 U
si

ng
 D

ec
is

io
n

Tr
ee

s
In

d
uc

ed
 b

y
G

en
et

ic
 P

ro
g

ra
m

m
in

g
”,

La
tin

-A
m

er
ic

an
 J

o
ur

na
l o

f C
o

m
p

ut
in

g
 (

LA
JC

),
 v

o
l.

11
, n

o.
 2

, 2
0

24
.

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2024 68

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
I,

Is
su

e
2,

 J
ul

y
20

24 AUTHORS

Franciele Alves Barbosa graduated with a Bachelor's degree in
Information Systems in 2021 from the Federal Institute of Northern
Minas Gerais, Salinas Campus. Currently, she is pursuing a Stricto
Sensu Graduate Program in Computational Modeling and Systems
at the State University of Montes Claros – UNIMONTES, Brazil, with
an expected completion date by December 2024. She has prior
experience in data mining, machine learning, time series forecasting,
software development, web development, and mobile development.
She has worked on a research project involving clustering reference
evapotranspiration time series for the state of Minas Gerais using
the K-means and Ward algorithms. Currently, she has worked on a
project that utilizes artificial intelligence for healthcare, with a focus
on cervical cancer diagnosis. Moreover, she has academic experience
in machine learning, time series forecasting, deep learning and data
science. Her interests encompass data mining, deep learning, time
series forecasting and in the python programming language.

Franciele Alves Barbosa

R
. R

o
ch

a,
 L

. S
an

to
s,

 R
. S

o
ar

es
, F

. B
ar

b
o

sa
 a

nd
 M

. D
'A

ng
el

o,

“C
la

ss
ifi

ca
tio

n
o

f F
ai

lu
re

 U
si

ng
 D

ec
is

io
n

Tr
ee

s
In

d
uc

ed
 b

y
G

en
et

ic
 P

ro
g

ra
m

m
in

g
”,

La
tin

-A
m

er
ic

an
 J

o
ur

na
l o

f C
o

m
p

ut
in

g
 (

LA
JC

),
 v

o
l.

11
, n

o.
 2

, 2
0

24
.

Rafael Almeida Soares completed his Bachelor's degree in Information
Systems in 2022 at the Federal Institute of Education, Science, and
Technology of Northern Minas Gerais, Salinas Campus. Currently, he
is enrolled in the Stricto Sensu Graduate Program in Computational
Modeling and Systems at the State University of Montes Claros,
pursuing a Master's degree, expected to be completed by December
2024. Professionally, Rafael holds experience in backend development
and mobile app development. He collaborated with the doctoral
program in Health Sciences at the State University of Montes Claros
to develop an application for childhood vaccination. His professional
interests lie in technology applied to agriculture, livestock farming,
and healthcare. Rafael's academic and professional pursuits extend to
pattern recognition in images using Convolutional Neural Networks.
He has already developed a system for license plate recognition.
Moreover, he is keenly interested in machine learning, optimization,
evolutionary computing, and the development of web and mobile
applications.

Rafael Almeida Soares

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2024 69

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
I,

Is
su

e
2,

 J
ul

y
20

24 AUTHORS

Marcos Flávio Silveira Vasconcelos D'Angelo joined the State University
of Montes Claros in 2000 as an Associate Professor in Information
Science. He earned his B.S. and M.S. degrees in Electrical Engineering
from the Pontifical Catholic University of Minas Gerais in 1998 and
2000, respectively, and his Ph.D. in Electrical Engineering from the
Federal University of Minas Gerais in 2010. His main research interests
encompass dynamic systems, optimization theory and applications,
and soft computing. Specifically, his work has focused on maintenance
engineering. D'Angelo served as the coordinator of the systems
engineering course and was a member of the university council at the
State University of Montes Claros. Currently, he serves as a reviewer
for journals and conferences, both nationally and internationally.
To date, he has published approximately 49 full papers in journals,
4 chapters in books, and 45 full papers in conference proceedings.
Additionally, he has coordinated research projects funded by grants
and technological innovation projects.

Marcos F. Silveira V. D'Angelo

R
. R

o
ch

a,
 L

. S
an

to
s,

 R
. S

o
ar

es
, F

. B
ar

b
o

sa
 a

nd
 M

. D
'A

ng
el

o,

“C
la

ss
ifi

ca
tio

n
o

f F
ai

lu
re

 U
si

ng
 D

ec
is

io
n

Tr
ee

s
In

d
uc

ed
 b

y
G

en
et

ic
 P

ro
g

ra
m

m
in

g
”,

La
tin

-A
m

er
ic

an
 J

o
ur

na
l o

f C
o

m
p

ut
in

g
 (

LA
JC

),
 v

o
l.

11
, n

o.
 2

, 2
0

24
.

