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Abstract—The National Institute for Space Research (INPE) has 
been a partner in significant projects that conduct atmospheric 
investigations impacting various sectors, such as the Amazon Tall 
Tower Observatory (ATTO) project. Since 2009, the project has 
conducted studies on the interactions between climate and the 
Amazon forest. ATTO has played an essential role in providing 
large volumes of data obtained by meteorological sensors, 
contributing to a deeper understanding of the atmospheric dynamics 
of the region. In a landscape where Artificial Intelligence-based 
rainfall forecast models gain prominence, this study explores the 
imbalance of data from the ATTO Campina field experiment and its 
influence on short-term rainfall forecasts using Artificial Neural 
Networks (ANNs). Metrics such as MAE, RMSE, and POD, as well 
as FAR indices, were applied in the assessment and revealed the 
connection between data balance and forecast results. More 
balanced data or data with greater weights for different rainfall 
ranges yield better results. The study emphasizes the importance of 
reliable data for training rain forecast models, aiming to improve the 
dexterity of these models. This approach is fundamental to increase 
the reliability of these models in real environments. 

Keywords—Rainfall prediction, Data balancing, Machine 
learning, Amazon, ATTO Campina 

 

I. INTRODUCTION 
The Amazon region is home to the world's largest tropical 

forest and it has an equatorial and tropical climate. It is a 
complex and unique environment for cloud and precipitation 
research [1], and one of the few continental areas where 
primitive atmospheric conditions can still be observed [2]. The 
Amazon Tall Tower Observatory (ATTO) project, located 
approximately 150 km north of Manaus and in partnership 
with INPE, is an international collaboration that has focused 
on the interactions between climate and the Amazon rainforest 
since 2009. At the site, measurements of various 
micrometeorological and atmospheric chemical variables are 
conducted, covering elements such as temperature, wind, 
precipitation, water and energy fluxes, turbulence, soil 
temperature, heat fluxes, radiation, and visibility [3]. This 
project substantially contributes to the understanding of 
atmospheric processes and their global impact [2].  

These advances in data collection are particularly relevant 
in the context of developments in Artificial Intelligence (AI) 

driving prediction models, including those based on Machine 
Learning (ML) and atmospheric data. However, measures are 
needed to enhance the reliability and accuracy of research 
results benefiting from this data. The application of AI 
techniques in predictions has been widely explored, as 
evidenced by research such as [4], [5], [6]. In 1990, during the 
16th Conference on Local Severe Storms, [4] presented a 
study on the use of AI in storm prediction. This study 
stimulated the development of new research in the field, 
especially with the use of Artificial Neural Networks (ANNs). 
ANNs are systems inspired by the brain´s ability to perform 
calculations in parallel and distributed, enabling the 
accomplishment of complex tasks such as pattern recognition 
[7]. [8]  highlighted ANNs as promising for predicting rainfall, 
emphasizing the need for reliable data for the effectiveness of 
these models. 

In the literature, there are several studies that have also 
taken a similar approach to estimate surface rainfall. For 
example, [9] developed a "nowcasting" technique to analyze 
intense convective activities in the southeast of India, using 
microwave radiometers. The term "nowcasting" refers to very 
short-term weather forecasts, which can range from minutes 
to six hours. Furthermore, [10] integrated data from 
meteorological sensors, such as temperature, humidity, water 
vapor, and droplet size, into rainfall prediction models using 
Machine Learning (ML), representing AI approaches for 
weather event forecasting. In contrast, [11] developed a short-
term rainfall prediction model using radiometric 
measurements, atmospheric parameters, and water content. 
However, its application in other regions is limited due to 
uncertainties in input data and observed results. 

In this study, a simple Multilayer Perceptron (MLP) type 
Neural Network was configured and trained to predict short-
term rainfall - one hour ahead (𝑡𝑡 + 1), where 𝑡𝑡 represents the 
current moment before the event is observed on the surface 1 
hour later. The model was fed with data from four 
meteorological instruments (rain gauge, two disdrometers and 
radiometer) dataset.  

It is important to emphasize that the focus of this study is 
not on evaluating the model but on the impact that data 
imbalance can have on its proficiency. Metrics such as Mean 
Absolute Error (MAE), Root Mean Squared Error (RMSE), 
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and additional parameters like Probability of Detection (POD) 
and False Alarm Rate (FAR) were used for evaluation, 
highlighting the relationship between observations and 
predictions. 

II. MATERIALS AND PROPOSED METHODOLOGY 
The research was conducted in five stages: data acquisition 

and preprocessing, exploratory data analysis (EDA) and 
variable selection, training of the neural network model, 
evaluation and testing, and analysis of results. Data were 
collected by four meteorological sensors: a Joss-Waldvogel 
impact disdrometer (RD-80), a PARticle SIze and VELocity 
laser disdrometer (PARSIVEL2), an automatic weighing-
bucket rain gauge, and a ground-based microwave radiometer 
(MWR) model MP3000A.  

These sensors are installed at the ATTO-Campina field 
experiment (2°10'53.7"S/59°01'18.7" W), located 
approximately 4 km northwest of the ATTO research site 
(2°08'38"S/58°59'59"W), as illustrated in Fig. 1. More 
detailed information about ATTO can be find at [2].  

The RD-80, based on the principle established by [12], 
measures the size distribution of raindrops through the force 
applied on a transducer. According to [13], this equipment 
provides estimates of the Drop Size Distribution (DSD) 
considering relationships between size, velocity, and shape of 
the drops, which is essential for calculating the rainfall rate 
and parameters related to precipitation microphysics.  

 
Fig. 1. Location of the Amazon Tall Tower Observatory (ATTO) project 
and the ATTO-Campina field experiment 

In turn, the PARSIVEL is widely used in precipitation 
studies due to its ability to provide detailed and accurate 
information on drop sizes and velocities. This instrument 
measures the drops by interrupting the beam of a horizontally 
projected laser by the disdrometer [14]. Additionally, rain 
gauges are essential instruments for measuring the amount of 
precipitation in a given location, with their records often 
employed in the calibration and verification of remote rain 
sensors and weather radars [15], [16], [17].  

According to [18], the MWR is an instrument used to 
measure radiance in the microwave spectrum and thereby 
estimate some atmospheric parameters such as temperature, 
humidity, and water vapor. It consists of two radiofrequency 
subsystems that use brightness temperature observations in 
channels between 51 and 59 GHz (V band) and between 22 

and 30 GHz (K band) to estimate atmospheric vertical profiles 
of temperature and water, as well as integrated vapor and 
liquid water contents in the atmosphere up to 10 km vertically. 

In the context of this study, near-surface precipitation data 
originate from the rain gauge and the two disdrometers, while 
observations of brightness temperature in different channels 
of the microwave spectrum are from an MWR. It is worth 
noting that, in this investigation, atmospheric parameters 
derived from the K band of the MWR were used. 

The data were accessed and acquired through a public FTP 
server provided by the University of São Paulo (USP). After 
data acquisition, the data underwent a preprocessing and 
integration process, resulting in a single dataset. The 
application of the integration technique was crucial since the 
data were of meteorological nature and collected by different 
instruments. Given the nature of the time series, it was 
necessary to ensure the alignment of these data, thus 
facilitating the necessary analyses.  

Next, an Exploratory Data Analysis (EDA) was conducted 
to investigate and select the best variables to be taken as input 
in the neural network training process, based on correlation 
analysis. A correlation matrix was constructed during the 
EDA, revealing relevant correlations between MWR data 
attributes and information about the occurrence of rainfall 
observed by other instruments. In other words, several MWR 
attributes were well correlated with the target variable, in this 
case, rainfall events.  

To validate these observations, a case study was conducted 
with data collected on February 18, 2022. During this study, a 
significant response of brightness temperature at the 22.234 
GHz channel, recorded by the MWR, was observed in relation 
to water accumulation in the clouds prior to rainfall.  

Fig. 2 graphically depicts these data, with the red line 
representing the time series of brightness temperature (TB) in 
(K) at the 22.234 GHz channel of the MWR, while the blue 
line represents the precipitation rate (mm/h) recorded by 
precipitation sensors. Following these observations, as 
mentioned earlier, in the exploratory data analysis (EDA) 
phase, the data were integrated for better handling.  

After integrating the data, as illustrated in Fig. 3, a direct 
analysis of the relationship between changes in brightness 
temperature and rainfall occurrence becomes evident. 
Notably, in the highlighted yellow region of the graph, there 
is a notable increase in temperature (red line) hours before 
rainfall events (blue line), which recorded a local precipitation 
rate exceeding 50 millimeters per hour (mm/h). Similar 
phenomena were also observed on other investigated rainy 
days. Additionally, other attributes measured by the MWR 
showed significant correlations with rainfall occurrence; 
however, only those mentioned earlier were used as input data 
for model training. 
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Fig. 2. Variation in brightness temperature (TB) in the 22.234 GHz channel 
(K) of the MWR and rainfall rate (mm/h) recorded by precipitation 
instruments on February 18, 2022 

 

Fig. 3. Brightness temperature (TB) (K) variation in the 22 GHz channel of 
the MWR alongside rainfall rate (mm/h) recorded by precipitation 
instruments on February 18, 2022, with data co-location 

As highlighted by [19], the use of radiometric brightness 
temperature as an observed parameter is an additional 
advantage since rainfall initiation is directly related to the 
presence of saturated water vapor and liquid water in the 
atmosphere, which is reflected in the increase in brightness 
temperature at frequencies 23 and 30 GHz [20].  

Therefore, harnessing the MWR's ability to measure 
radiance in the microwave spectrum, particularly through 
brightness temperature observations in the K band, proved to 
be fundamental for conducting the investigations. 

III. INVESTIGATED SCENARIOS 
The investigations addressed the imbalance in the samples, 

emphasizing that the presence of this imbalance in the data can 
lead to biased estimates for certain types of rainfall. For 
example, there may be a tendency to favor weaker 
precipitation events over heavier rainfall, especially 
considering that heavy precipitation events are less frequent. 
Fig. 4 displays the unbalanced distribution of rainfall data in 
the data used, illustrating the disparity in the frequency of 
different rainfall intensities.  

 

Fig. 4. Analysis of the distribution of rainfall intensity in the precipitation 
data used 

This imbalance in the data can arise from various sources, 
including differences in the geographical distribution of 
weather events, seasonal variations in the frequency of 
different types of rainfall, and even limitations in data 
collection methods. Therefore, understanding and properly 
addressing this imbalance is essential to ensure accurate 
analyses and meaningful insights into weather patterns and 
rainfall events. In this context, the model was trained, 
evaluated, and tested in three different scenarios, as detailed 
below: 

A. All occurrences of rain 
Dataset containing all instances of observed systems with 

rainfall rates equal to or greater than 0.1 mm/h (minimum 
disdrometer rainfall detection) during the observed period. 
This approach allowed evaluating the model ability to make 
predictions in a range of scenarios with different rainfall 
intensities. 

B. Imbalance by rainfall intensity 
Dataset of defined rainfall rates, ranging from 0.1 to 50 

mm/h, distributed as 64.13% for weak rain, 27.41% for 
moderate rain, and 8.46% for heavy rain. This test allowed us 
to assess the direct impact of data imbalance on the model 
predictions, with known data imbalances. 

C. Application of adjustments to the weights of less 
representative samples 
The same data from Scenario B were used; however, 

weights were applied to each sample point in the model 
training process. Higher weights were applied to less 
representative samples, following an approach similar to the 
technique proposed by [21]. This weight adjustment aimed to 
mitigate the impact of imbalance and investigate how 
considering rainfall intensity during training influences 
predictions.  

The intensity scale of precipitation is provided in Table I 
for reference. 
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TABLE I.  INTENSITY SCALE OF PRECIPITATION (MM/H) 

Rain Type Cumulative precipitation (mm/h) 

Weak rain ≥ 0.1 and < 2.5 

Moderate rain ≥ 2.5 and < 10 

Heavy rain ≥ 10 and < 20 

Rainstorm ≥ 20 

 

Regarding the neural network used in this study, the 
approach adopted was similar to that proposed by [22], with 
adjustments tailored to the context of this investigation. Next, 
we will briefly describe the architecture defined for the model 
and the process of assigning weights to the samples.  

To calculate the sample weights, an interval-based 
approach was employed. Initially, all weights were initialized 
as equal for all samples. Then, three distinct intervals in the 
target sample values were identified: the majority, the 
intermediate, and the minority. These intervals were defined 
based on the values (Table I) of the training data. We assigned 
differentiated weights to each interval based on a specific 
calculation function, aiming to enhance the model's 
performance, especially concerning minority samples. 

The structure of the MLP neural network was defined in 
terms of its layers and corresponding activations. The network 
consisted of an input layer with a number of neurons equal to 
the number of input attributes. Two hidden layers are utilized, 
with 64 and 32 neurons, respectively, both activated by the 
ReLU (Rectified Linear Unit) activation function. Dropout, a 
regularization technique, is applied after the first and second 
hidden layers to prevent overfitting. Finally, an output layer 
with a single neuron and linear activation is employed to 
generate predictions.  

The analysis of comparisons between actual samples and 
predictions for 1 hour ahead represents a crucial strategy to 
investigate the effects of identified imbalances and the model's 
ability to handle short-term variations. To assess the results, 
the RMSE and MAE metrics were employed, where RMSE is 
defined as (1). 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  √1
𝑛𝑛   ∑ (𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖)2𝑛𝑛

𝑖𝑖=1  () 

Where 𝑛𝑛  represents the total number of observations, 𝑦𝑦𝑖𝑖  
denotes the i-th actual observation, and �̂�𝑦𝑖𝑖 represents the i-th 
prediction. The MAE metric calculates the average of the 
absolute differences between actual observations and 
predictions, providing a direct measure of the average 
magnitude of prediction errors, and is given in (2): 

 𝑅𝑅𝑀𝑀𝑅𝑅 = 1
𝑛𝑛 ∑  |𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖|𝑛𝑛

𝑖𝑖=1  () 

Where |𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖 | denotes the absolute value of the difference 
between the actual observation and the corresponding 
prediction. 

Additionally, probabilistic parameters POD (3) and FAR 
(4) were also applied to examine the correspondence between 
observed and predicted rainfall rates.  

 𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑎𝑎
𝑎𝑎 + 𝑐𝑐 () 

 

 𝐹𝐹𝑀𝑀𝑅𝑅 = 𝑏𝑏
𝑎𝑎 + 𝑏𝑏 () 

 According to [23], these parameters classify events as hits, 
misses, false positives, or false negatives. These parameters 
depend on the relationship between hits and misses, where: 

• a: Number of observed events predicted by the 
model. 

• b: Events not observed but were predicted. 
• c: Events observed but the model did not predict. 

Additionally, we also have d, which represents events not 
predicted and that also do not occur but not used in the 
previous metrics. In the POD parameter, the score of the 
operation ranges from zero to one, where the maximum value 
of 1 reflects the most ideal performance, while 0 represents 
the opposite situation. In turn, the FAR evaluation scale starts 
from 0 to indicate the most favorable result possible. The 
combination of these two indices allowed an amplified 
evaluation of the predictions in each of the tests. The training 
process of the neural network was carried out with data from 
the period September 2021 to May 2023 (i.e. a total of 1.793 
observations), divided in the proportion of 70% for training, 
15% for validation, and 15% for testing. 

IV. RESULTS AND DISCUSSIONS 
In this study, the analysis focused on evaluating the effects 

of imbalanced data distribution on the prediction of rainfall 
rate using ANN. It is important to note that the scope of this 
investigation does not cover the verification of the predictive 
capacity of the model itself but rather explores the connection 
between data imbalance and its effects on model efficacy.  

We acknowledge that the model has not yet achieved its 
optimal performance. To conduct this analysis, a series of tests 
was carried out using distinct datasets, and this allows the 
observation of how each dataset influenced the prediction 
outcomes. Fig. 5 presents a comparative analysis of test results 
in various scenarios, using new data from April 6th, 2023, 
covering only 12 hours when rainfall events were recorded by 
precipitation sensors.  

These data constitute a sample that was not exposed to the 
model during the training process. The graph illustrates the 
discrepancies between the forecasts and the observed values 
for the specific case. 
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Fig. 5. Plot of discrepancies between predictions and observed values in 
tests with data from the observed day 

Upon objective analysis of Fig. 5, we emphasize how data 
imbalances impacted the predictions. This becomes evident 
when examining the discrepancies in Scenario C, where the 
differences between the forecasts (red line) and the actual 
values (blue line) decreased over the analyzed period after 
applying weights to the samples.  

Each point of the red line above the blue points indicates 
an overestimation, while points below indicate an 
underestimation. When the lines coincide, it indicates a 
correct forecast. Notably, after applying weights to the less 
representative samples, a significant improvement in the 
predictions of Scenario C was observed, as evidenced by the 
closer alignment between the red and blue lines. 

Additionally, for a more comprehensive assessment of 
predictions, we turn to scatterplots (Fig. 6), providing a visual 
representation that establishes the relationship between 
observed and predicted values. It is worth mentioning that in 
Fig. 4, the results presented show distinctions between the 
three tests performed (Scenarios A, B and C).  

In the case of Scenario C, in the scatter plot where 
adjustments were applied to the sample weights based on the 
intensity of the rain during training, a notable improvement in 
the dispersion is evident with a notable alignment of the 
dashed red line with the reference line (black line dashed line) 
compared to Scenarios A and B.  

 

Fig. 6. Scatter plots illustrating the relationship between observed and 
predicted values, providing a comprehensive assessment of predictions 

Note that the model showed a better ability to predict 
more intense rainfall. This suggests that the adjustments 
made in Scenario C had a positive impact on the forecasts, 
allowing for a closer alignment between observed and 
predicted values. We emphasize that in this visual 
representation of the results, the closer the red line gets to the 
black line, the better the predictions. Despite the differences 
in approaches, the results in Scenario C are similar to class 
balancing techniques, indicating a convergence of 
performance between these types of strategies. This 
emphasizes the relevance of including rainfall intensity and 
balance approaches, reinforcing the search for more accurate 
and reliable forecasts.  

Tables II to V present the results of the metrics applied in 
the evaluation and the outcomes obtained with the 
probabilistic parameters used to examine the correspondence 
between observed and predicted rainfall rates in the 
investigated scenarios. 
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TABLE II.  RESULTS OF EVALUATION METRICS WITH EVALUATION 
DATA AND TEST DATA 

Scenarios 
Values for MAE and RMSE obtained in the 

conducted investigations 
Dataset MAE RMSE 

A 

Validation data 2.83 7.78 

Test data 2.88 7.77 

B 
Validation data 1.30 2.59 

Test data 1.31 2.65 

C 
Validation data 1.19 2.51 

Test data 1.27 2.54 

 

TABLE III.  RESULTS OF THE POD AND FAR PARAMETERS IN THE 
INVESTIGATIONS CONDUCTED IN SCENARIO A 

Scenario A 

POD (Probability of Detection) and FAR 
(False Alarm Rate) obtained in the conducted 

investigations 

Rain Type POD FAR Interpretation 

Evaluate the 
model's ability 

to make 
predictions in a 

range of 
scenarios with 

varying 
occurrences of 

rainfall of 
different 

intensities. 

Weak rain 0.70 0.30 

Good 
detection, 
moderate 

false alarms 

Moderate rain 0.65 0.35 

Good 
detection, 
moderate 

false alarms 

Heavy rain 0.39 0.61 
Low detection 
and/or high 
false alarms 

All 0.41 0.24 

Reasonable 
detection, 
significant 

false alarms 
 

TABLE IV.  RESULTS OF THE POD AND FAR PARAMETERS IN THE 
INVESTIGATIONS CONDUCTED IN SCENARIO B 

Scenario B 

POD (Probability of Detection) and FAR (False 
Alarm Rate) obtained in the conducted 

investigations 

Rain Type POD FAR Interpretation 

Evaluate the 
direct impact 

of data 
imbalance on 
the model's 
predictions, 
with the data 
imbalances 
previously 

known. 

Weak rain 0.87 0.13 
High detection, 

low false 
alarms. 

Moderate 
rain 0.69 0.31 

Good detection, 
moderate false 

alarms. 

Heavy rain 0.19 0.81 
Low detection 
and/or high 
false alarms. 

Scenario B 

POD (Probability of Detection) and FAR (False 
Alarm Rate) obtained in the conducted 

investigations 

Rain Type POD FAR Interpretation 

All 0.44 0.17 
Reasonable 

detection, low 
false alarms. 

TABLE V.  RESULTS OF THE POD AND FAR PARAMETERS IN THE 
INVESTIGATIONS CONDUCTED IN SCENARIO C 

Scenario C 

POD (Probability of Detection) and FAR (False 
Alarm Rate) obtained in the conducted 

investigations 
Rain Type POD FAR Interpretation 

Investigate 
how 

considering 
rainfall 

intensity 
during 

training 
influences the 

model's 
predictions by 

applying 
higher 

weights to 
less 

representative 
samples. 

Weak rain 0.72 0.28 
Good detection, 
moderate false 

alarms 

Moderate rain 0.85 0.15 
High detection, 

low false 
alarms 

Heavy rain 0.62 0.38 
Good detection, 
moderate false 

alarms 

All 0.43 0.21 
Reasonable 

detection, low 
false alarms 

 

The metrics highlight the impact of data imbalance on 
predictions. Table 1 shows that in Scenario C, the best results 
were recorded in terms of MAE and RMSE, while Scenario A 
reveals the lowest performance. In Scenario C, with the 
application of weight adjustment to less representative 
samples, it outperforms both Scenario A and Scenario B.  

Although the difference compared to Scenario B is 
relatively low, the results in Scenario C for validation metrics 
(MAE: 1.19, RMSE: 2.51) and test metrics (MAE: 1.27, 
RMSE: 2.4) suggest that the weight adjustment technique may 
be a good alternative for this type of context. 

As presented, it is possible to observe important insights 
into the model behavior in the three scenarios studied. 
Scenarios A, B, and C highlight the importance of data 
representativeness and balance. Scenario A shows limitations 
in predictions for all types of rainfall but still performs better 
for lighter rains. Scenario B reveals high detection for both 
light and moderate rains, but predictions for heavy rains need 
improvement. In Scenario C, there is a good detection for light 
and moderate rains, but the detection of heavy rains remains 
limited, despite improvements compared to previous tests. 

V. CONCLUSIONS 
The prediction of weather events, such as heavy rainfall, 

has gained global prominence. These events are often linked 
to natural disasters such as floods and landslides, impacting 
lives and economies. Accurately forecasting rainfall and its 
intensity in the short term can minimize risks and damages, 
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proving crucial in sectors such as agriculture and logistics. 
The results of this study underscored the importance of data 
balance in the construction and effectiveness of prediction 
models. The sensitivity of these models to data details 
highlights the need to consider the representativeness of the 
data used. 

The focus was on evaluating the impact of meteorological 
data imbalance on rainfall prediction, with the use of data from 
multiple sensors and Artificial Neural Networks (ANNs). 
Investigations in three scenarios, related to the imbalance in 
training and validating the model data, highlighted the 
importance of data balance for accurate detection and a 
reduced number of false alarms. Strategies such as adjusting 
weights on samples proved to be alternatives to enhance 
rainfall predictions, especially in intense events where 
imbalance can compromise accuracy. Weighted sampling 
techniques also proved effective in dealing with imbalances, 
improving the model performance in the investigated 
scenario. 
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