ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2024
58
DOI:
LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol XI, Issue 2, July 2024
10.5281/zenodo.12192031
LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol XI, Issue 2, July 2024
proving crucial in sectors such as agriculture and logistics.
The results of this study underscored the importance of data
balance in the construction and effectiveness of prediction
models. The sensitivity of these models to data details
highlights the need to consider the representativeness of the
data used.
The focus was on evaluating the impact of meteorological
data imbalance on rainfall prediction, with the use of data from
multiple sensors and Artificial Neural Networks (ANNs).
Investigations in three scenarios, related to the imbalance in
training and validating the model data, highlighted the
importance of data balance for accurate detection and a
reduced number of false alarms. Strategies such as adjusting
weights on samples proved to be alternatives to enhance
rainfall predictions, especially in intense events where
imbalance can compromise accuracy. Weighted sampling
techniques also proved effective in dealing with imbalances,
improving the model performance in the investigated
scenario.
R
EFERENCES
[1] L. Pires, K. Sušelj, L. Rossato, and J. Teixeira, “Analyses of Shallow
Convection over the Amazon Coastal Region Using Satellite Images,
Data Observations and Modeling,” Rev. Bras. Meteorol., vol. 33, pp.
366–379, Jun. 2018, doi: 10.1590/0102-7786332009.
[2] M. O. Andreae et al., “The Amazon Tall Tower Observatory (ATTO):
overview of pilot measurements on ecosystem ecology, meteorology,
trace gases, and aerosols,” Atmospheric Chem. Phys., vol. 15, no. 18,
pp. 10723–10776, Sep. 2015, doi: 10.5194/acp-15-10723-2015.
[3] V. A. Costa, “A narrative review of papers developed on the Amazon
Tall Tower Observatory experimental site,” Res. Soc. Dev., vol. 10, no.
14, p. e73101421749, Oct. 2021, doi: 10.33448/rsd-v10i14.21749.
[4] W. R. Moninger et al., “Summary of the First Conference on Artificial
Intelligence Research in Environmental Sciences (AIRIES),” Bull. Am.
Meteorol. Soc., vol. 68, no. 7, pp. 793–800, Jul. 1987.
[5] D. W. McCann, “A Neural Network Short-Term Forecast of
Significant Thunderstorms,” Weather Forecast., vol. 7, no. 3, pp. 525–
534, Sep. 1992, doi: 10.1175/1520-
0434(1992)007<0525:ANNSTF>2.0.CO;2.
[6] A. P. Almeida, “Uso de redes neurais para previsão de descargas
elétricas nuvem-solo a partir de dados de radar: Um estudo de caso na
Amazônia”, Dissertation (Masters in Applied Computing), National
Institute for Space Research, São José dos Campos-SP, Brazil, Sep.
2021.
[7] S. Haykin, Neural Networks: A Comprehensive Foundation (2nd
Edition) Neural Networks: A Comprehensive Foundation. 1998.
[8] Z. Basha, N. Bhavana, P. Bhavya, and S. V, Rainfall Prediction using
Machine Learning & Deep Learning Techniques. Aug. 2020, p. 97.
doi: 10.1109/ICESC48915.2020.9155896.
[9] M. Akkisetti, M. Rajeevan, V. R. Madineni, J. Bhate, and c. v Naidu,
“Nowcasting severe convective activity over southeast India using
ground-based microwave radiometer observations,” J. Geophys. Res.
Atmospheres, vol. 118, pp. 1–13, Jan. 2013, doi:
10.1029/2012JD018174.
[10] M. Darji, V. Dabhi, and H. Prajapati, Rainfall forecasting using neural
network: A survey. Jul. 2015. doi: 10.1109/ICACEA.2015.7164782.
[11] A. Maitra and R. Chakraborty, “Rain prediction using radiometric
observations at a tropical location,” in 2017 XXXIInd General
Assembly and Scientific Symposium of the International Union of
Radio Science (URSI GASS), Aug. 2017, pp. 1–4. doi:
10.23919/URSIGASS.2017.8105124.
[12] J. Joss and A. Waldvogel, “Ein Spektrograph fur Niedersch
Pagsmessungen mit automatischer Auswertung,” Pure Appl.
Geophys., vol. 68, pp. 240–246, Dec. 1967, doi: 10.1007/BF00874898.
[13] C. Caracciolo, F. Prodi, and R. Uijlenhoet, “Comparison between
Pludix and impact/optical disdrometers during rainfall measurement
campaigns,” Atmospheric Res., vol. 82, pp. 137–163, Nov. 2006, doi:
10.1016/j.atmosres.2005.09.007.
[14] M. Löffler-Mang and J. Joss, “An Optical Disdrometer for Measuring
Size and Velocity of Hydrometeors,” J. Atmospheric Ocean. Technol.
- J ATMOS OCEAN TECHNOL, vol. 17, Feb. 2000, doi:
10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2.
[15] E. Habib, W. Krajewski, and A. Kruger, “Sampling Errors of Tipping-
Bucket Rain Gauge Measurements,” J. Hydrol. Eng., vol. 6, Apr. 2001,
doi: 10.1061/(ASCE)1084-0699(2001)6:2(159).
[16] G. Upton and A. R. Rahimi, “On-line detection of errors in tipping-
bucket raingauges,” J. Hydrol., vol. 278, pp. 197–212, Jul. 2003, doi:
10.1016/S0022-1694(03)00142-2.
[17] S. Ochoa-Rodriguez, L.-P. Wang, P. Willems, and C. Onof, “A Review
of Radar‐Rain Gauge Data Merging Methods and Their Potential for
Urban Hydrological Applications,” Water Resour. Res., vol. 55, Aug.
2019, doi: 10.1029/2018WR023332.
[18] Radiometrics Corporation, “MP3000A Profiler Operator’s Manua.”
Boulder, CO, USA, 2008.
[19] K. Bhattacharyya and M. Islam, “SHORT TERM RAIN
FORECASTING FROM RADIOMETRIC BRIGHTNESS
TEMPERATURE DATA,” J. Mech. Contin. Math. Sci., vol. 15, Feb.
2020, doi: 10.26782/jmcms.2020.02.00007.
[20] E. R. Westwater, “The accuracy of water vapor and cloud liquid
determination by dual-frequency ground-based microwave
radiometry,” Radio Sci., vol. 13, no. 4, pp. 677–685, Aug. 1978, doi:
10.1029/RS013i004p00677.
[21] Y. Chen et al., “Improving the heavy rainfall forecasting using a
weighted deep learning model,” Front. Environ. Sci., vol. 11, p.
1116672, Feb. 2023, doi: 10.3389/fenvs.2023.1116672.
[22] L. C. P. Velasco, R. P. Serquiña, M. S. A. Abdul Zamad, B. F. Juanico,
and J. C. Lomocso, “Week-ahead Rainfall Forecasting Using
Multilayer Perceptron Neural Network” Procedia Comput. Sci., vol.
161, pp. 386–397, Nov. 2019, doi: 10.1016/j.procs.2019.11.137.
[23] R. Levine, “Statistical Methods in the Atmospheric Sciences by Daniel
S. Wilks,” J. Am. Stat. Assoc., vol. 95, pp. 344–345, Mar. 2000, doi:
10.2307/2669579.