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Abstract— This article addresses the solution to the inverse 
problem in a one-dimensional transient partial differential 
equation with a source term, commonly encountered in heat 
transfer modeling for diffusion problems. The equation is utilized 
in a dimensionless form to derive a more general solution that is 
applicable in various contexts. The Transition Markov Chain 
Monte Carlo (TMCMC) method is utilized to estimate spatially 
variable thermophysical properties within the equation. This 
approach involves transitioning between probability densities, 
gradually refining the prior distribution to approximate the 
posterior distribution. The results indicate the effectiveness of the 
TMCMC method in addressing this inverse problem, and it offers 
a robust methodology for estimating spatially variable 
coefficients. 

Keywords—Inverse Problem, Transition Markov Chain 
Monte Carlo (TMCMC), Heterogeneous Media, Estimation of 
Variable Coefficients, Heat Conduction 

I. INTRODUCTION 
The identification of thermophysical properties is a 

fundamental process in various fields of science and 
engineering, where understanding these properties is 
essential to comprehend material behavior or identify them. 
Properties like thermal conductivity, density, and specific 
heat directly influence how a material responds to 
temperature changes [4]. When modeling the heat transfer 
process, these properties can be expressed through 
parameters within partial differential equations [3] [5] [10]. 
This, in turn, paves the way for varied approaches in 
estimating these parameters, ranging from direct methods to 
indirect approaches, each carrying its own advantages and 
disadvantages. 

Within direct methods, direct experimental 
measurements on thermophysical properties of material 

samples are conducted. While recognized for their 
precision, these methods often prove to be costly, time-
consuming, and in certain cases, intrusive to the material 
under analysis. 

On the other hand, indirect methods offer an attractive 
alternative. They do not demand direct measurements of 
thermophysical properties but instead explore relationships 
between these properties and other variables that can be 
more easily measured [1][11]. However, indirect methods 
often rely on assumptions and models to establish these 
relationships, introducing uncertainties in the estimation. 

One particular approach that has gained prominence is 
the utilization of Bayesian frameworks, such as the 
Transitional Markov Chain Monte Carlo (TMCMC) 
method, to estimate thermo-physical properties. The 
distinctive feature of Bayesian methods is the incorporation 
of prior information, i.e., prior knowledge about the 
properties in question [11]. TMCMC, for instance, 
constructs a probability distribution that takes into account 
both experimental data and prior information, resulting in 
more reliable estimates and quantified uncertainties [9] [11]. 

The aim of this work is to demonstrate the utilization of 
the TMCMC technique for computing unspecified 
parameters in a differential equation, proposing three 
distinct models of their spatial variation. The obtained 
results demonstrate the effectiveness of the TMCMC 
method in solving the inverse problem, providing a robust 
methodology for this type of problem. Furthermore, this 
work may validate the use of TMCMC as a reliable and 
versatile tool for parameter estimation in different contexts, 
paving the way for more advanced applications, such as 
characterizing new materials with different thermal 
properties. 
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II. METHODOLOGY 
In this section, the methodology employed in this study 

will be presented. In the subsequent subsections, the 
mathematical formulation of the physical problem will be 
explained, and the intricacies of Transition Markov Chain 
Monte Carlo (TMCMC) will be explored. Introduced by [8], 
this approach draws inspiration from the adaptive 
Metropolis-Hastings technique and employs Monte Carlo 
principles through Markov Chains. A comprehensive 
overview of the TMCMC method will be provided, 
including discussions on its fundamental principles and 
procedural steps. The aim of this exposition is to provide a 
clear understanding of how the TMCMC method operates, 
especially in the context of estimating coefficients in 
solving inverse problems. 

A. Mathematical Formulation 
In this section, the mathematical formulation underlying 

the physical phenomenon of heat transfer within a material 
of length L=10 will be delved into. This investigation 
considers Neumann boundary conditions coupled with a 
constant initial condition. The primary objective of this 
section is to model the dynamic evolution of temperature, 
represented as T(x,t), across space and time. 

 w(x) ∂T(x,t)
∂t

 = ∂
∂x

(k(x) ∂T(x,t)
∂x

) +p(x) (1a) 

In this context, k(x) represents the thermal conductivity 
coefficient, a measure characterizing an intrinsic ability of a 
material to conduct heat. In turn, the coefficient w(x), 
known as the thermal diffusion coefficient, incorporates the 
inherent thermal diffusivity property of the material in 
question. The term p(x) refers to an internal heat source 
within the material. The spatial domain is defined in the 
interval 0 < x < L, while time is restricted to positive values, 
t > 0, where L denotes the physical extent of the material. 
These parameters are expressed in terms of Neumann 
boundary conditions: 

 ∂T(x,t)
∂x

|
x=0

= 0 (1b) 

 ∂T(x,t)
∂x

|
x=L

= 0 (1c) 

  These expressions characterize the rates of heat transfer 
at the material boundaries, and the initial condition is 
established as shown below, where T0  is a constant 
representing the initial temperature distribution within the 
material. 

 T(x,0) = T0 (1d) 

 This study examines Equation (1) in three distinct 
scenarios: firstly, when both coefficients k(x) and w(x) are 
kept constant; secondly, when they are modeled as linear 
functions; and finally, when they follow exponential 
functions. The primary aim of these analyses is to assess the 
Transitional Markov Chain Monte Carlo (TMCMC) method 
ability to accurately estimate these parameters. 

 Transitional Markov Chain Monte Carlo (TMCMC) 

The Transitional Markov Chain Monte Carlo (TMCMC) 
method, as proposed by [8], draws inspiration from the 
adaptive Metropolis-Hastings method as suggested by [6], 
and it is grounded on the Monte Carlo methodology through 
Markov Chains. The main idea is to avoid direct sampling 
of difficult probability distributions by sampling from a 
series of intermediate distributions that converge to the 
posterior distribution [8]. 

This method inherits the advantages of Adaptive 
Metropolis-Hastings (AMH), which is suitable for very 
sharp, flat, and multimodal probability density functions 
(PDFs), and is particularly efficient in high-dimensional 
PDFs. Additionally, the TMCMC method has the capability 
to automatically select intermediate PDFs, enhancing its 
versatility and effectiveness in sampling complex 
distributions [8]. 

The posterior distribution is calculated using Bayes' 
theorem, described by Equation (2) [9], as shown below: 

 π(P∣ Y) ∝ π(P)π(Y| P) (2)  

But, as mentioned earlier, the TMCMC method avoids 
computing the distribution in this way, in order to employ a 
series of intermediate distributions as follows: 

 fj(P) ∝ π(P)π(𝑌𝑌|𝑃𝑃)pj (3)  

The steps for the TMCMC algorithm are outlined as    
follows [7]: 

 
 
1. Samples {P₀,₁, P₀,₂, ..., P₀,ₙ} are acquired from the 

prior distribution f₀(P) = π(P) using Monte Carlo 
simulation. The process initiates with p₀ set to 0, and steps 
2 and 3 are repeated for j = {0, 1, 2, ...}. 

2. Likelihood distributions π(Y | Pⱼ,₁), ..., π(Y | Pⱼ,ₙ) are 
computed, and the weights wⱼ,ₖ = π(Y | Pⱼ,ₖ)^(pⱼ₊₁ - pⱼ) are 
determined. The selection of pⱼ₊₁ ensures that the coefficient 
of variation (COV) of the importance weights {wⱼ,₁, ..., 
wⱼ,ₙ} equals 100%. Additionally, normalized weights {wⱼ,₁, 
..., wⱼ,ₙ} are calculated. 

3. Based on the normalized weights {wⱼ,₁, ..., wⱼ,ₙ}, 
candidates are randomly chosen from {Pⱼ,₁, Pⱼ,₂, ..., Pⱼ,ₙ}. A 
new candidate is proposed according to the distribution 
N(Pⱼ,ₖ, Σⱼ), forming the sequence {Pⱼ₊₁,₁, Pⱼ₊₁,₂, ..., Pⱼ₊₁}. The 
covariance matrix Σⱼ is defined by an equation. 
 

 ∑ j =  β2∑j=1
nj wj,k [(Pj,k-Pj̅ )×(Pj,k-Pj̅ )

T ] (4a) 

with  

 Pj̅ = 
∑l=1

nj wj,1. Pj,1

∑l=1
nj wj,l

(4b)  

The parameter β is a factor that scales the distribution of the 
covariance matrix proposal [8]. 
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III. RESULTS 
In this section, the study conducted a comparative 

analysis of the parameters w(x) and k(x) estimated in the 
Partial Differential Equation (PDE), as mentioned earlier. 
Three distinct variations were considered: constant, linear, 
and exponential. To obtain experimental measurements in 
the direct problem, three spatial measurement points were 
selected: x=2.5, x=5.0, and x=7.5, resulting in a total of 101 
measurements for each sensor within the analyzed time 
interval. The standard deviations of the measurement errors 
σ were defined as 0.5 for the constant case, 1.0 for the linear 
case, and 1.5 for the exponential case. Therefore, these 
experimental measurements are now referred to as actual 
measurements. It is worth noting that these measurement 
errors were chosen to be proportional to the measured 
temperature, specifically around 2%. This choice was based 
on the averaging of experimental measurements for each 
model.  

The Transition Markov Chain Monte Carlo (TMCMC) 
method was employed to simultaneously obtain estimates of 
these parameters, and the results were compared for each 
variation. The study was conducted with a total of 20,000 
samples for the Constant model, 50,000 for the Linear 
model, and 50,000 for the Exponential model and β = 0.1 in 
all three situations. In order to simulate a source with 
characteristics of a smooth step curve, the following 
mathematical formulation for p(x) was used. 

p(x) = 1- 1
[1+e-100(x-0.5L)] (6)  

The specific formulations and characteristics of the 
analyzed models for w(x) and k(x) are detailed in the 
following sections, accompanied by their respective 
mathematical formulations and corresponding results.  

It is important to emphasize that all results presented in 
this work were generated using the computational platform 
Wolfram Mathematica 12.0, operating on a desktop 
equipped with a Central Processing Unit (CPU) AMD 
Ryzen Threadripper1950x clocked at 4 GHz and 64 GB of 
DDR4 type RAM. The adopted operating system is 
Windows 10 in its 64-bit version. 

A. Model with Constant Coefficients 
Firstly, the TMCMC method was applied to estimate the 

parameters of a model with constant coefficients. In the 
direct problem, k(x) = 1 and w(x) = 1 were used. Table I 
below shows the exact values of the coefficients, as well as 
the results obtained after the method was applied. 

TABLE I.  ESTIMATED RESULTS VIA TMCMC – MODEL WITH 
CONSTANT COEFFICIENTS 

Parameter Exact 
Value Estimated Standard 

Deviation Error(%) 

w0 1.00 1.00056 0.00142 0.056 

k0 1.00 1.00641 0.01269 0.641 

 

The table analysis reveals that the method was effective 
in parameter estimation, resulting in reduced relative errors 
and standard deviations. Fig. 1 depicts a comparison 
between estimated values, represented by the blue curve, 
and actual measurements denoted by red points, along with 

the 95% confidence interval depicted by the blue shaded 
region. On the other hand, Fig. 2 presents the residual 
analysis of the three utilized sensors, along with their 
corresponding linear regression. 

 

Fig. 1. Temperature Measurements with 95% confidence interval - 
Model with Constant Coefficients 

  

Fig. 2. Residual analysis – Model with Constant Coefficients 

Through the analysis of the graphs, it is evident that the 
estimated measurements exhibit high agreement with the 
actual measurements. The residual analysis reveals that the 
differences between these measurements are close to zero 
across the entire domain, as evidenced by the linear 
regression. Fig.3 and Fig. 4 illustrate the histogram of the 
estimates for the parameters w(x) and k(x). It is important 
to note that all estimated samples were normalized by their 
respective exact values, rendering the histogram 
dimensionless. 

 

Fig. 3. Histogram of the w0 estimated parameter - model with constant 
coefficients 
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Fig. 4. Histogram of the k0 estimated parameter - model with constant 
coefficients 

 The means of the estimated values are close to the exact 
values, as expected. It is noteworthy that the estimation for 
the parameter w(x) was more accurate than for the 
parameter k(x). 

B. Model with Linear Coefficients 
 Similarly to the model with constant coefficients, Table 
II presents the values used in solving the direct problem for 
the case of linear coefficients in the form w(x)=wox+w1 
and k(x)=k0x+k1.The corresponding estimates, standard 
deviations, and relative errors are also indicated. 

TABLE II.   ESTIMATED RESULTS VIA TMCMC - MODEL 
LINEAR WITH LINEAR COEFFICIENTS 

Parameter Exact 
Value Estimated Standard 

Deviation Error(%) 

w0 0.09 0.08992 0.00185 0.091 
w1 0.10 0.10021 0.00857 0.215 
w0 0.09 0.09099 0.00552 1.101 

k1 0.90 0.09117 0.02360 8.832 

 

 Except for the parameter k1 , all estimates yielded 
relative errors of less than 3%. Fig. 5 illustrates the 
comparison between the measurements of estimated values, 
represented by the blue curve, and actual measurements 
denoted by red points, along with the 95% confidence 
interval depicted by the blue shaded region. Meanwhile, 
Fig. 6 displays the residual analysis between these two 
measurements and the linear regression of the points. 

  

Fig. 5. Temperature Measurements with 95% confidence interval – 
Model with Linear Coefficients 

 

Fig. 6. Residual analysis - Model with Linear Coefficients 

 Once again, a remarkable resemblance is observed 
between the estimated measurements and the actual 
measurements. However, it is noticeable that for the linear 
case, the confidence interval encompasses all the conducted 
measurements. The residual analysis demonstrates that the 
differences between the measurements are close to zero 
across the entire domain, as shown by the linear regression. 
Fig. 7, Fig. 8, Fig. 9 and Fig. 10 displays the histograms of 
parameter estimates for this case. 

  

Fig. 7. Histogram of the w0  estimated parameter - model with linear 
coefficients 

  

Fig. 8. Histogram of the w1  estimated parameter - model with linear 
coefficients 
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Fig. 9. Histogram of the k0  estimated parameter - model with linear 
coefficients 

  

Fig. 10. Histogram of the k1  estimated parameter - model with linear 
coefficients 

 The means of the estimated values approach the exact 
values, as expected, reinforcing the reliability of the 
TMCMC method. It is worth noting that the estimate for the 
parameter w(x) reveals superior precision compared to the 
parameter k(x), suggesting the need for a more in-depth 
analysis to comprehend the underlying causes of this 
discrepancy. 

C. Model with Exponential Coefficients 
 Finally, Table III showcases the values and estimates of 
the parameters associated with the case of exponential 
coefficients in the form w(x)=w0ew1x and k(x)=k0ek1x. 

TABLE III.   ESTIMATED RESULTS VIA TMCMC - MODEL WITH 
LINEAR COEFFICIENTS 

Parameter Exact 
Value Estimated Standard 

Deviation Error (%) 

w0 0.10 0.10159 0.00157 1.595 
w1 0.25 0.24738 0.00249 1.046 
w0 0.10 0.10066 0.00226 0.663 

k1 0.25 0.24637 0.00487 1.450 

 

 Once again, the estimates resulted in significantly 
reduced relative errors and standard deviations. Fig. 11 
illustrates the comparison graphs between the 
measurements with the estimated parameters, represented 
by the blue curve, and the actual measurements denoted by 
red points, along with the 95% confidence interval depicted 
by the blue shaded region. Meanwhile, Fig. 12 displays the 

residual analysis between these measurements with the 
linear regression of the points. 

  

Fig. 11. Temperature Measurements with 95% confidence interval - 
Model with Exponential Coefficients 

 

Fig. 12. Residual analysis - Model with Exponential Coefficients 

 Similar to the previous cases, the estimated 
measurements exhibit high agreement with the actual 
measurements. The residual analysis confirms that the 
differences between these measurements are close to zero 
across the entire domain. Figs.13, 14, 15 and 16 display the 
histograms of parameter estimates for this case. 

  

Fig. 13. Histogram of the w0  estimated parameter - model with 
exponential coefficients 
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Fig. 14. Histogram of the w1  estimated parameter - model with 
exponential coefficients 

  

Fig. 15. Histogram of the k0  estimated parameter - model with 
exponential coefficients 

  

Fig. 16. Histogram of the k1  estimated parameter - model with 
exponential coefficients  

 It is important to note that despite this change in 
distribution, the TMCMC method demonstrated estimating 
the parameters with lower relative error compared to the 
previous linear cases. This observation underscores the 
relative capability of the method in dealing with exponential 
coefficients, even with the loss of uniformity in histograms, 
indicating a relative precision in estimating these 
parameters. 

IV. CONCLUSION 
Throughout this study, the evaluation of the TMCMC 

method efficacy in estimating coefficient parameters was 
conducted across three distinct scenarios. The analysis of 
the obtained tables and histograms reveals variability in the 

method efficiency based on the analyzed case. Notably, it 
was found that the method faced more significant challenges 
in estimating parameters for k(x) in the second scenario, 
corresponding to a linear model. Despite this additional 
complexity, the relative error consistently remained below 
9%. 

A detailed analysis of the generated histograms allows 
for a deeper understanding of the results. In all investigated 
scenarios, a notable precision was observed in estimating 
the parameters. In the constant model case, the value 
distribution showed a well-defined Gaussian shape, 
centered around the exact value, demonstrating highly 
accurate estimation. However, in the linear case, there was 
a more significant dispersion in the probable values, 
especially considering the parameters associated with k(x). 
Lastly, in the third case, an even higher precision compared 
to the linear case was highlighted, along with the presence 
of distributions that appeared to be bimodal, indicating the 
occurrence of two peaks of probable values for the k(x) 
parameters, something that warrants further investigation. 

These results offer a comprehensive insight into the 
applicability and performance of the TMCMC method in 
parameter estimation, highlighting its nuances across 
different model configurations. The achieved accuracy, 
even in the face of specific challenges, underscores the 
robustness and potential of this method for parameter 
analyses and inferences across various contexts. 
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