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Abstract—Transport problems of neutral particles have 
important applications in engineering and medical fields, from 
safety and quality protocols to optical medical procedures. In this 
paper, the ANN-MoC approach is proposed to solve the inverse 
transient transport problem of estimating the absorption coefficient 
from scalar flux measurements at the boundaries of the model 
domain. The central idea is to fit an Artificial Neural Network 
(ANN) using samples generated by direct solutions computed by a 
Method of Characteristics (MoC) solver. The direct solver 
validation is performed on a manufactured solution problem. Two 
inverse problems are then presented for testing the ANN-MoC 
method. In the first, a homogeneous medium is assumed, and, in the 
second, the medium is heterogeneous with a piecewise constant 
absorption coefficient. We show that the method can achieve good 
estimates, with accuracy depending on that of the direct solver. We 
also include a test of sensibility by studying the propagation of noise 
on the input data. The results highlight the potential of the proposed 
method to be applied to a broader range of inverse transport 
problems. 

Keywords—artificial neural network, method of characteristics, 
particle neutral transport, inverse problem 

I. INTRODUCTION 
Neutral particle transport problems have many important 

applications in engineering and medical fields. The main 
fields of radiative heat transfer and neutron transport share the 
fundamental model based on the linear Boltzmann equation 
[1], [2]. Applications include engineering at high 
temperatures, such as glass and ceramic manufactures [3], 
combustion chambers [4], solar energy production [5], nuclear 
energy production [6], and optical medicine [7], [8]. Related 
inverse problem solutions can enhance the development of 
safety protocols, quality control procedures, and technological 
innovations. 

We consider the time-dependent linear Boltzmann 
equation with initial and boundary conditions and with 
isotropic scattering 

 
∀𝜇𝜇: 1

𝑐𝑐
𝜕𝜕
𝜕𝜕𝜕𝜕 𝐼𝐼(𝑡𝑡, 𝑥𝑥, 𝜇𝜇) + 𝜇𝜇 𝜕𝜕

𝜕𝜕𝜕𝜕 𝐼𝐼(𝑡𝑡, 𝑥𝑥, 𝜇𝜇) + 𝜎𝜎𝜕𝜕𝐼𝐼(𝑡𝑡, 𝑥𝑥, 𝜇𝜇) =
𝜎𝜎𝑠𝑠𝛹𝛹(𝑡𝑡, 𝑥𝑥) + 𝑞𝑞(𝑡𝑡, 𝑥𝑥, 𝜇𝜇), (𝑡𝑡, 𝑥𝑥) ∈ (0, 𝑡𝑡𝑓𝑓] × 𝐷𝐷,

       () 

 ∀𝜇𝜇: 𝐼𝐼(0, 𝑥𝑥, 𝜇𝜇) = 𝐼𝐼0(𝑥𝑥, 𝜇𝜇), 𝑥𝑥 ∈ 𝐷𝐷, () 

 ∀𝜇𝜇 > 0: 𝐼𝐼(𝑡𝑡, 𝑎𝑎, 𝜇𝜇) = 𝐼𝐼𝑖𝑖𝑖𝑖,𝑎𝑎(𝑡𝑡, 𝜇𝜇), 𝑡𝑡 ∈ (0, 𝑡𝑡𝑓𝑓], () 

 ∀𝜇𝜇 < 0: 𝐼𝐼(𝑡𝑡, 𝑏𝑏, 𝜇𝜇) = 𝐼𝐼𝑖𝑖𝑖𝑖,𝑏𝑏(𝑡𝑡, 𝜇𝜇), 𝑡𝑡 ∈ (0, 𝑡𝑡𝑓𝑓], () 

𝐼𝐼(𝑡𝑡, 𝑥𝑥, 𝜇𝜇) (𝑊𝑊/𝑠𝑠𝑠𝑠) denotes the radiation intensity at time 0 ≤
𝑡𝑡 ≤ 𝑡𝑡𝑓𝑓 (𝑠𝑠) at point 𝑥𝑥 ∈ 𝐷𝐷 = [𝑎𝑎, 𝑏𝑏] (𝑚𝑚), and in the direction 
−1 ≤ 𝜇𝜇 ≤ 1, 𝜇𝜇 ≠ 0. The average speed of light in the medium 
is denoted by 𝑐𝑐 (𝑚𝑚/𝑠𝑠) . The total absorption coefficient is 
denoted by 𝜎𝜎𝜕𝜕 = 𝜅𝜅 + 𝜎𝜎𝑠𝑠 , while (1/𝑚𝑚)  and 𝜎𝜎𝑠𝑠  (1/𝑚𝑚)  are, 
respectively, the absorption and scattering coefficients. The 
sources are denoted by 𝑞𝑞(𝑡𝑡, 𝑥𝑥, 𝜇𝜇) (𝑊𝑊/(𝑚𝑚𝑠𝑠𝑠𝑠)) in the domain 
and 𝐼𝐼𝑖𝑖𝑖𝑖,𝑎𝑎(𝑡𝑡, 𝜇𝜇), 𝐼𝐼𝑖𝑖𝑖𝑖,𝑏𝑏(𝑡𝑡, 𝜇𝜇)  (𝑊𝑊/𝑠𝑠𝑠𝑠)  at boundaries. At 𝑡𝑡 = 0 , 
initial condition 𝐼𝐼 = 𝐼𝐼0(𝑥𝑥, 𝜇𝜇)  (𝑊𝑊/𝑠𝑠𝑠𝑠)  is assumed. The 
average scalar flux (𝑊𝑊/𝑠𝑠𝑠𝑠) is defined as 

 𝛹𝛹(𝑡𝑡, 𝑥𝑥) ≔ 1
2 ∫ 𝐼𝐼(𝑡𝑡, 𝑥𝑥, 𝜇𝜇)𝑑𝑑𝜇𝜇1

−1  () 

Inverse transport problems have been the subject of 
important research for many decades. The books of [9] and 
[10] discuss the fundamental methods applied to the solution 
of inverse problems. Concerning the problems of parameter 
estimation, the main approaches consist of estimating 
parameters as solutions to an associated minimization 
problem. The problem can then be solved by optimization 
methods, which usually require a good initial approximation 
of the solution. When this is not known, meta-heuristic 
algorithms can be applied to this end (see, for instance [11]). 
Alternatively, Deep Learning [12] techniques are also applied 
[13], [14]. A well-known approach is to fit an Artificial Neural 
Network (ANN, [15]) with samples built from solutions to the 
associated direct problem. 

In this context, we introduce the ANN-MoC approach to 
the inverse transport problem of the absorption coefficient 
estimation from the scalar flux measured at the boundaries of 
the model domain. The core concept is to fit an ANN using 
data derived from direct solutions of Eq. (1) computed by a 
solver based on the Method of Characteristics (MoC) [16]. 
The designed methodology is here presented together with 



ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2024 43
DOI:

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
I, 

Is
su

e 
2,

 J
ul

y 
20

24

10.5281/zenodo.12191947

N. Roman, P. dos Santos and P. Konzen,   
“ANN-MoC Method for Inverse Transient Transport Problems in One-Dimensional Geometry”, 

Latin-American Journal of Computing (LAJC), vol. 11, no. 2, 2024. 
 

selected test cases. After testing the direct solver, two inverse 
problems are considered. The first is a transport problem in a 
homogeneous medium. In the second, the medium has two 
regions with different absorption coefficients.  

In the following, the methodology of the MoC direct 
solver and the ANN model are presented. Numerical 
experiments with the proposed approach are then presented. 
They include the selection of ANN architectures, data 
preprocessing, and model sensibility tests. Conclusions are 
then presented. 

II. THE ANN-MOC METHOD 
The ANN-MoC approach consists of solving the inverse 

transport problem by an Artificial Neural Network (ANN) 
trained from samples generated by directly solving a set of 
transport problems by the Method of Characteristics (MoC). 

A. MoC direct solver 
The MoC direct solver computes an approximation of Eq. 

(1) built with the Discrete Ordinates Method (DOM) [1] 
followed by an implicit Euler time discretization [17]. The 
raised system of ordinary differential equations is decoupled 
by a Source Iteration (SI, [1]) scheme and then, solved with 
the Method of Characteristics (MoC, [15]). 

Discrete ordinates formulation. The following DOM form 
of Eq. (1) is obtained by assuming the Gauss-Legendre 
quadrature {(𝜇𝜇𝑗𝑗, 𝑤𝑤𝑗𝑗)}𝑗𝑗=1

𝑛𝑛𝑞𝑞 , with even 𝑛𝑛𝑞𝑞 > 1, 

 
∀𝜇𝜇: 1

𝑐𝑐
𝜕𝜕
𝜕𝜕𝜕𝜕 𝐼𝐼𝑗𝑗(𝑡𝑡, 𝑥𝑥) + 𝜇𝜇𝑗𝑗

𝜕𝜕
𝜕𝜕𝜕𝜕 𝐼𝐼𝑗𝑗(𝑡𝑡, 𝑥𝑥) + 𝜎𝜎𝜕𝜕𝐼𝐼𝑗𝑗(𝑡𝑡, 𝑥𝑥)

= 𝜎𝜎𝑠𝑠𝛹𝛹(𝑡𝑡, 𝑥𝑥) + 𝑞𝑞𝑗𝑗(𝑡𝑡, 𝑥𝑥), (𝑡𝑡, 𝑥𝑥) × 𝐷𝐷,
 () 

 ∀𝜇𝜇: 𝐼𝐼𝑗𝑗(0, 𝑥𝑥) = 𝐼𝐼𝑗𝑗,0(𝑥𝑥), 𝑥𝑥 ∈ 𝐷𝐷, () 

 ∀𝜇𝜇 > 0: 𝐼𝐼𝑗𝑗(𝑡𝑡, 𝑎𝑎) = 𝐼𝐼𝑗𝑗,𝑖𝑖𝑛𝑛,𝑎𝑎, ∀𝑡𝑡 ∈ (0, 𝑡𝑡𝑓𝑓], () 

 ∀𝜇𝜇 < 0: 𝐼𝐼𝑗𝑗(𝑡𝑡, 𝑏𝑏) = 𝐼𝐼𝑗𝑗,𝑖𝑖𝑛𝑛,𝑏𝑏, ∀𝑡𝑡 ∈ (0, 𝑡𝑡𝑓𝑓], () 

where the notation 𝐼𝐼𝑗𝑗(𝑡𝑡, 𝑥𝑥) ≈ 𝐼𝐼(𝑡𝑡, 𝑥𝑥, 𝜇𝜇𝑗𝑗)  (analogous to the 
others) is assumed with 𝑗𝑗 = 1,2, . . . , 𝑛𝑛𝑞𝑞 . The scalar flux is 
approximated by 

 𝛹𝛹(𝑡𝑡, 𝑥𝑥) ≈ 1
2 ∑ 𝐼𝐼𝑗𝑗

𝑛𝑛𝑞𝑞
𝑗𝑗=1 𝑤𝑤𝑗𝑗  () 

Time discretization. For the time discretization, it is assumed 
that 𝑡𝑡(𝑘𝑘) = 𝑘𝑘ℎ𝜕𝜕, 𝑘𝑘 = 0,1,2, . . . , 𝑛𝑛𝜕𝜕, ℎ𝜕𝜕 = 𝑡𝑡𝑓𝑓/𝑛𝑛𝜕𝜕  (see Fig. 1). 
The implicit Euler formulation of Eq. (3) gives an iterative 
procedure with initialization 

 ∀𝜇𝜇𝑗𝑗: 𝐼𝐼𝑗𝑗
(0)(𝑥𝑥) = 𝐼𝐼𝑗𝑗,0(𝑥𝑥), 𝑥𝑥 ∈ 𝐷𝐷, () 

𝑗𝑗 = 1,2, . . . , 𝑛𝑛𝑞𝑞, and the following steps 

 
∀𝜇𝜇𝑗𝑗: 1

𝑐𝑐
𝐼𝐼𝑗𝑗

(𝑘𝑘+1)(𝜕𝜕)−𝐼𝐼𝑗𝑗
(𝑘𝑘)(𝜕𝜕)

ℎ𝑡𝑡
+ 𝜇𝜇𝑗𝑗

𝜕𝜕𝐼𝐼𝑗𝑗
(𝑘𝑘+1)(𝜕𝜕)

𝜕𝜕𝜕𝜕 + 𝜎𝜎𝜕𝜕𝐼𝐼𝑗𝑗
(𝑘𝑘+1)(𝑥𝑥)

= 𝜎𝜎𝑠𝑠𝛹𝛹(𝑘𝑘+1)(𝑥𝑥) + 𝑞𝑞𝑗𝑗
(𝑘𝑘+1)(𝑥𝑥),

       () 

 ∀𝜇𝜇𝑗𝑗 > 0: 𝐼𝐼𝑗𝑗
(𝑘𝑘+1)(𝑎𝑎) = 𝐼𝐼𝑗𝑗,𝑖𝑖𝑛𝑛,𝑎𝑎

(𝑘𝑘+1), () 

 ∀𝜇𝜇𝑗𝑗 < 0: 𝐼𝐼𝑗𝑗
(𝑘𝑘+1)(𝑏𝑏) = 𝐼𝐼𝑗𝑗,𝑖𝑖𝑛𝑛,𝑏𝑏

(𝑘𝑘+1), () 

where the notation 𝐼𝐼𝑗𝑗
(𝑘𝑘)(𝑥𝑥) ≈ 𝐼𝐼(𝑡𝑡(𝑘𝑘), 𝑥𝑥, 𝜇𝜇𝑗𝑗) (analogous to the 

others) is assumed with 𝑘𝑘 = 0,1,2, . . . , 𝑛𝑛𝜕𝜕 − 1  and 𝑗𝑗 =
1,2, . . . , 𝑛𝑛𝑞𝑞 . For the sake of simplicity, in the following the 
index 𝑘𝑘  will be suppressed, with 𝐼𝐼𝑗𝑗

(1)  denoting 𝐼𝐼𝑗𝑗
(𝑘𝑘+1)  and 

𝐼𝐼𝑗𝑗
(0) = 𝐼𝐼𝑗𝑗

(𝑘𝑘) (analogous to the others). 

Source iteration. The decoupling of system Eq. (6) is 
performed with the Source Iteration (SI) technique. From a 
given initial scalar flux 𝛹𝛹(0,0)(𝑥𝑥), successive approximations 
𝛹𝛹(1,𝑙𝑙)(𝑥𝑥)are iteratively computed from 

 
∀𝜇𝜇𝑗𝑗: 1

𝑐𝑐
𝐼𝐼𝑗𝑗

(1,𝑙𝑙+1)(𝜕𝜕)−𝐼𝐼𝑗𝑗
(0)(𝜕𝜕)

ℎ𝑡𝑡
+ 𝜇𝜇𝑗𝑗

𝜕𝜕𝐼𝐼𝑗𝑗
(1,𝑙𝑙+1)(𝜕𝜕)

𝜕𝜕𝜕𝜕 + 𝜎𝜎𝜕𝜕𝐼𝐼𝑗𝑗
(1,𝑙𝑙+1)(𝑥𝑥) 

= 𝜎𝜎𝑠𝑠𝛹𝛹(1,𝑙𝑙)(𝑥𝑥) + 𝑞𝑞𝑗𝑗
(1)(𝑥𝑥),

 () 

 ∀𝜇𝜇𝑗𝑗 > 0: 𝐼𝐼𝑗𝑗
(1,𝑙𝑙+1)(𝑎𝑎) = 𝐼𝐼𝑗𝑗,𝑖𝑖𝑛𝑛,𝑎𝑎

(1,𝑙𝑙+1), () 

 ∀𝜇𝜇𝑗𝑗 < 0: 𝐼𝐼𝑗𝑗
(1,𝑙𝑙+1)(𝑏𝑏) = 𝐼𝐼𝑗𝑗,𝑖𝑖𝑛𝑛,𝑏𝑏

(1,𝑙𝑙+1), () 

where 

 𝛹𝛹(1,𝑙𝑙)(𝑥𝑥) ≔ 1
2 ∑ 𝐼𝐼𝑗𝑗

(1,𝑙𝑙)(𝑥𝑥)𝑛𝑛𝑞𝑞
𝑗𝑗=1 𝑤𝑤𝑗𝑗, () 

for 𝑗𝑗 = 1,2, . . . , 𝑛𝑛𝑞𝑞, 𝑙𝑙 = 0, 1, 2, …  until some given stop 
criteria are fulfilled. 

 

Fig. 1. Scheme of the space-time discretization. Points (×) and intervals 
(lines and sets) for directions μ > 0 (blue) and μ < 0 (red) 

Method of characteristics. At each time step and each source 
iteration, Eq. (7) is solved by the Method of Characteristics 
(MoC). First, it is observed that Eq. (7a) can be rewritten as  

 
𝜇𝜇𝑗𝑗

𝜕𝜕𝐼𝐼𝑗𝑗
(1,𝑙𝑙+1)(𝜕𝜕)

𝜕𝜕𝜕𝜕 + (𝜎𝜎𝜕𝜕 + 1
𝑐𝑐ℎ𝑡𝑡

) 𝐼𝐼𝑗𝑗
(1,𝑙𝑙+1)(𝑥𝑥) = 𝜎𝜎𝑠𝑠𝛹𝛹(1,𝑙𝑙)(𝑥𝑥)

+ 𝑞𝑞𝑗𝑗
(1)(𝑥𝑥) + 1

𝑐𝑐ℎ𝑡𝑡
𝐼𝐼𝑗𝑗

(0)(𝑥𝑥),
  () 

𝑗𝑗 = 1,2, . . . , 𝑛𝑛𝑞𝑞  and 𝑙𝑙 = 0, 1, 2, … . Again, for the sake of 
simplicity, the index j is suppressed in the following. 
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The MoC form of Eq. (9) is obtained by assuming 𝑥𝑥(𝑠𝑠) =
𝑥𝑥0 + 𝑠𝑠𝑠𝑠, 𝑠𝑠 ∈ ℝ, from where Eq. (9) is rewritten as 

 

𝑑𝑑
𝑑𝑑𝑑𝑑 𝐼𝐼(1,𝑙𝑙+1)(𝑠𝑠) + (𝜎𝜎𝑡𝑡 + 1

𝑐𝑐ℎ𝑡𝑡
) 𝐼𝐼(1,𝑙𝑙+1)(𝑠𝑠)

= 𝜎𝜎𝑑𝑑𝛹𝛹(1,𝑙𝑙)(𝑠𝑠) + 𝑞𝑞(1)(𝑠𝑠) + 1
𝑐𝑐ℎ𝑡𝑡

𝐼𝐼(0)(𝑠𝑠),
 () 

𝑙𝑙 = 0, 1, 2, …. This linear first-order differential equation can 
now be solved using an integration factor, which gives the 
solution from 

 
𝐼𝐼(1,𝑙𝑙+1)(𝑠𝑠) = 𝐼𝐼(1,𝑙𝑙+1)(0)𝑒𝑒− ∫ �̃�𝜎𝑡𝑡

𝑠𝑠
0 𝑑𝑑𝑑𝑑′ +

∫ 𝑆𝑆(𝑙𝑙)(𝑠𝑠′)𝑒𝑒− ∫ �̃�𝜎𝑡𝑡
𝑠𝑠

𝑠𝑠′ 𝑑𝑑𝑑𝑑′′𝑑𝑑
0 𝑑𝑑𝑠𝑠′,

 () 

where �̃�𝜎𝑡𝑡 ≔ 𝜎𝜎𝑡𝑡 + 1
𝑐𝑐ℎ𝑡𝑡

 and  

 𝑆𝑆(𝑙𝑙)(𝑠𝑠) ≔ 𝜎𝜎𝑑𝑑𝛹𝛹(1,𝑙𝑙)(𝑠𝑠) + 𝑞𝑞(1)(𝑠𝑠) + 1
𝑐𝑐ℎ𝑡𝑡

𝐼𝐼(0)(𝑠𝑠), () 

𝑙𝑙 = 0, 1, 2, …. 

One observes that choosing 𝑥𝑥0 = 𝑎𝑎, Eq. (11) gives the particle 
intensity 𝐼𝐼(1,𝑙𝑙+1)(𝑥𝑥(𝑠𝑠))  at each domain 𝑥𝑥(𝑠𝑠)  for a given 
direction 𝑠𝑠 > 0 . Analogously, by choosing 𝑥𝑥0 = 𝑏𝑏 , one 
obtains the particle intensity point for a given direction 𝑠𝑠 < 0. 

Direct solver algorithm. Assuming a spatial mesh with 𝑛𝑛𝑥𝑥 
nodes 𝑥𝑥𝑖𝑖 = 𝑎𝑎 + 𝑖𝑖ℎ𝑥𝑥 , and mesh size ℎ𝑥𝑥 = (𝑏𝑏 − 𝑎𝑎) 𝑛𝑛𝑥𝑥⁄ , 𝑖𝑖 =
0,1,2, … , 𝑛𝑛𝑥𝑥 , see Fig. 1, the direct solver algorithm can be 
summarized as follows: 

1.  Set time, mesh and quadrature parameters 

2.  From initial condition, set 

 𝐼𝐼𝑖𝑖,𝑗𝑗
(0) ← 𝐼𝐼(0, 𝑥𝑥𝑖𝑖, 𝑠𝑠𝑖𝑖), ∀𝑖𝑖, 𝑗𝑗, () 

 𝛹𝛹𝑖𝑖
(0) ← 1

2 ∑ 𝐼𝐼𝑖𝑖,𝑗𝑗
(0)𝑛𝑛𝑞𝑞

𝑗𝑗=1 𝑤𝑤𝑗𝑗, ∀𝑖𝑖. () 

3. (Time loop). For 𝑘𝑘 = 0,1,2, . . . , 𝑛𝑛𝑡𝑡: 
 a. (SI loop) For 𝑙𝑙 = 0,1,2, . . . , 𝑛𝑛𝑑𝑑.𝑖𝑖.: 
 a.1. For 𝑗𝑗 = 0,1,2, . . . , 𝑛𝑛𝑞𝑞 and 𝑠𝑠𝑗𝑗 > 0: 
  For 𝑖𝑖 = 0,1,2, . . . , 𝑛𝑛𝑥𝑥 − 1: 

 𝐼𝐼𝑖𝑖+1,𝑗𝑗
(1,𝑙𝑙+1) ← 𝐼𝐼𝑖𝑖,𝑗𝑗

(1,𝑙𝑙+1)𝑒𝑒− ∫ �̃�𝜎𝑡𝑡
𝑠𝑠

0 𝑑𝑑𝑑𝑑′ +
                                              ∫ 𝑆𝑆(𝑙𝑙)(𝑠𝑠′)𝑒𝑒− ∫ �̃�𝜎𝑡𝑡

𝑠𝑠
𝑠𝑠′ 𝑑𝑑𝑑𝑑′′𝑑𝑑

0 𝑑𝑑𝑠𝑠′. () 

 a.2. For 𝑗𝑗 = 1,2, . . . , 𝑛𝑛𝑞𝑞 and 𝑠𝑠𝑗𝑗 < 0: 
  For 𝑖𝑖 = 𝑛𝑛𝑥𝑥, 𝑛𝑛𝑥𝑥 − 1, . . . ,1: 

 𝐼𝐼𝑖𝑖−1,𝑗𝑗
(1,𝑙𝑙+1) ← 𝐼𝐼𝑖𝑖,𝑗𝑗

(1,𝑙𝑙+1)𝑒𝑒− ∫ �̃�𝜎𝑡𝑡
𝑠𝑠

0 𝑑𝑑𝑑𝑑′ +
                                             ∫ 𝑆𝑆(𝑙𝑙)(𝑠𝑠′)𝑒𝑒− ∫ �̃�𝜎𝑡𝑡

𝑠𝑠
𝑠𝑠′ 𝑑𝑑𝑑𝑑′′𝑑𝑑

0 𝑑𝑑𝑠𝑠′. () 

 a.3. Compute new scalar flux 

 𝛹𝛹𝑖𝑖
(1+𝑙𝑙) ← 1

2 ∑ 𝐼𝐼𝑖𝑖,𝑗𝑗
(1,𝑙𝑙+1)𝑛𝑛𝑞𝑞

𝑗𝑗=1 𝑤𝑤𝑗𝑗, ∀𝑖𝑖.  () 

 a.4. SI stop criterion 

B. ANN inverse model 
The inverse problem is solved by fitting a Multilayer 

Perceptron network (MLP, [14]) from a data set 
{(𝝍𝝍𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛

(𝑑𝑑) , 𝜿𝜿𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛
(𝑑𝑑) )}

𝑑𝑑=1

𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 generated from computed solutions 

of the direct problem for several values of the absorption 
coefficient. The MLP of 𝑛𝑛ℎ + 2 layers is written as 

 

 �̃�𝜿 = 𝒩𝒩 (𝝍𝝍; {(𝒇𝒇(𝑙𝑙), 𝒃𝒃(𝑙𝑙), 𝑾𝑾(𝑙𝑙))}𝑙𝑙=1
𝑛𝑛ℎ+1), () 

where, in the l-th network layer with 𝑛𝑛𝑛𝑛
(𝑙𝑙)  neuron units, 

(𝒇𝒇(𝑙𝑙), 𝒃𝒃(𝑙𝑙), 𝑾𝑾(𝑙𝑙)) denotes the triple of the activation function, 
the bias 𝑛𝑛𝑛𝑛

(𝑙𝑙)-vector, and the weights 𝑛𝑛𝑛𝑛
(𝑙𝑙) × 𝑛𝑛𝑛𝑛

(𝑙𝑙+1)-matrix. By 
denoting the input 𝒚𝒚(𝟎𝟎) = 𝝍𝝍  of detector measurements, its 
forward propagation through the network layers 𝑙𝑙 =
1, 2, … 𝑛𝑛ℎ + 1 is given by 

 𝒚𝒚(𝑙𝑙) = 𝒇𝒇(𝑙𝑙)(𝑊𝑊(𝑙𝑙)𝒚𝒚(𝑙𝑙−1) + 𝒃𝒃(𝑙𝑙)), () 

and the output is the estimated absorption coefficient �̃�𝜿 =
𝒚𝒚(𝒏𝒏𝒉𝒉+𝟏𝟏) (see Fig. 2). 

 

Fig. 2. Architecture of a MLP neural network with 𝑛𝑛𝑛𝑛  neurons on each 
𝑛𝑛ℎhidden layer 

Basic training algorithm. The basic training algorithm can 
be summarized as follows: 

1. Set the MLP architecture. 

Sets 𝑛𝑛ℎ, 𝑛𝑛𝑛𝑛, 𝒇𝒇(𝑙𝑙), and initial 𝑏𝑏(𝑙𝑙), 𝑊𝑊(𝑙𝑙) and a global learning 
rate 𝑙𝑙𝑡𝑡 > 0. 

2. Loop over epochs 𝑒𝑒 ← 1,2, . . . , 𝑛𝑛𝑒𝑒: 
 2.a. Forward the training set. 

  �̃�𝜿𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 ← 𝒩𝒩(𝝍𝝍𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛). () 

 2.b. Compute the loss function. 

  ℒ ← 1
𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

∑ |�̃�𝜿𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛
(𝑑𝑑) − 𝜿𝜿𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛

(𝑑𝑑) |
2

.𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑑𝑑=1  () 

 2.c. Backward the loss function to compute the gradients 

  𝜕𝜕ℒ
𝜕𝜕𝑊𝑊(𝑙𝑙) , 𝜕𝜕ℒ

𝜕𝜕𝑏𝑏(𝑙𝑙) , 𝑙𝑙 = 1, 2, … 𝑛𝑛𝑙𝑙. () 

 2.d. Perform an optimizer gradient based step. 
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  (𝑊𝑊(𝑙𝑙), 𝒃𝒃(𝑙𝑙)) ← (𝑊𝑊(𝑙𝑙), 𝒃𝒃(𝑙𝑙)) − 𝑙𝑙𝑟𝑟
𝜕𝜕ℒ

𝜕𝜕(𝑊𝑊(𝑙𝑙),𝒃𝒃(𝑙𝑙)) , () 

where 𝑙𝑙 = 1, 2, … 𝑛𝑛𝑙𝑙, and  𝑙𝑙𝑟𝑟is a given learning rate. 

The MLPs reported in this paper have been implemented 
with the help of the machine learning package PyTorch [18], 
and trained with the Adam method [19]. The learning rate has 
been set to 𝑙𝑙𝑟𝑟  =  10−2. 

ANN model test. The test of the trained neural network model 
consists of verifying its performance for a new data set 
{(𝝍𝝍𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

(0) , 𝜿𝜿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
(𝑡𝑡) )}

𝑡𝑡=1

𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 which has not been used for training. The 

test data set has also been computed by solving the direct 
problem for several values of the absorption coefficient. The 
accuracy of the network estimated values �̃�𝜿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

(𝑡𝑡)  can be 
measured by the squared error ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  and the coefficient of 
determination. 

C. Data preprocessing 
Data preprocessing for deep learning may reduce 

generalization errors and reduce the size of the model needed 
to fit the training set [12]. There are many available 
techniques [20], and we have chosen to work with the 
preprocessing now as Standard Scaler. This function 
transforms the features to have zero mean and unit standard 
deviation. The general formula for the transformation is: 

 𝑋𝑋𝑡𝑡𝑠𝑠𝑠𝑠𝑙𝑙𝑡𝑡𝑠𝑠 = 𝑋𝑋 − 𝑚𝑚𝑡𝑡𝑠𝑠𝑛𝑛(𝑋𝑋)
𝑡𝑡𝑡𝑡𝑠𝑠(𝑋𝑋)  , () 

where 𝑋𝑋 is the original value of the feature, 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛(𝑋𝑋) is the 
mean and 𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) the standard deviation over the data set 𝑋𝑋. 
It ensures that features have comparable scales, which is 
known to enhance training gradient-based methods.  

III. RESULTS 
Numerical experiments with the proposed ANN-MoC 

approach are presented. First, the direct solver validation is 
presented on a manufactured solution problem. Two inverse 
problems are then discussed. In the first, a homogeneous 
medium is assumed, and, in the second, it is considered a two-
region heterogeneous medium. 

A. Direct solver test 
In order to test the direct solver, we have considered the 

manufactured solution 

 𝐼𝐼(𝑠𝑠, 𝑥𝑥, 𝜇𝜇) ≔ 𝑚𝑚−𝜎𝜎𝑡𝑡|𝑥𝑥−𝑡𝑡|2, 𝑥𝑥 ∈ (0, 𝑠𝑠𝑓𝑓] × [0,1]. () 

By substituting Eq. (24) into Eq. (1.1), the source is found to 
be 

 𝑞𝑞(𝑠𝑠, 𝑥𝑥, 𝜇𝜇) = [2𝜎𝜎𝑡𝑡(1 − 𝜇𝜇)(𝑥𝑥 − 𝑠𝑠) + 𝜅𝜅]𝑚𝑚−𝜎𝜎𝑡𝑡|𝑥𝑥−𝑡𝑡|2, () 

and from the definition of the scalar flux Eq. (2), one has Ψ̂ =
𝐼𝐼. 

After numerical tests, we have chosen the solver 
parameters ℎ𝑡𝑡 = 0.01, 𝑛𝑛𝑥𝑥 = 𝑛𝑛𝑞𝑞 = 100 , and 𝑠𝑠𝑡𝑡𝑙𝑙 = 1.49 ×
10−8  as the absolute 𝐿𝐿2-norm tolerance for the SI stopping 
criterion. Table I shows a comparison between the direct 
solver approximations and the exact scalar flux solutions at 

𝑠𝑠𝑓𝑓 = 1.0 for different absorption coefficients. The relative 𝐿𝐿2-
error is denoted by 𝜀𝜀𝑟𝑟𝑡𝑡𝑙𝑙  and indicates that the chosen 
parameters were enough for the direct solver to produce an 
accurate solution with 𝜀𝜀𝑟𝑟𝑡𝑡𝑙𝑙 < 10−2. 

TABLE I. COMPARISON BETWEEN THE DIRECT SOLVER APPROXIMATIONS 
AND THE EXACT SOLUTION AT 𝑠𝑠𝑓𝑓 = 1.0 

𝜿𝜿 𝜳𝜳(𝟎𝟎. 𝟎𝟎) 𝜳𝜳(𝟎𝟎. 𝟓𝟓) 𝜳𝜳(𝟏𝟏. 𝟎𝟎) 𝜺𝜺𝒓𝒓𝒓𝒓𝒓𝒓 

0.9 3.667𝑚𝑚 − 1 7.748𝑚𝑚 − 1 9.974𝑚𝑚 − 1 4.5𝑚𝑚 − 3 

0.5 3.664𝑚𝑚 − 1 7.740𝑚𝑚 − 1 9.971𝑚𝑚 − 1 5.3𝑚𝑚 − 3 

0.1 3.660𝑚𝑚 − 1 7.730𝑚𝑚 − 1 9.968𝑚𝑚 − 1 6.4𝑚𝑚 − 3 

Exac
t 3.679𝑚𝑚 − 1 7.788𝑚𝑚 − 1 1.000𝑚𝑚 + 0 --x-- 

B. Inverse problem 1 – homogeneous medium 
In the inverse problem 1, we assume a homogeneous 

medium with a constant absorption coefficient. The problem 
consists of estimating 0.1 < 𝜅𝜅 < 0.9 from detectors 
measurements of the scalar fluxes at 𝑥𝑥𝑠𝑠,0 = 0, 𝑥𝑥𝑠𝑠,1 = 1 and at 
time 𝑠𝑠𝑠𝑠,3 = 3.0. Boundary conditions are taken as 𝐼𝐼(𝑠𝑠, 0, 𝜇𝜇) =
1, for all 𝜇𝜇 > 0, and 𝐼𝐼(𝑠𝑠, 1, 𝜇𝜇) = 0, for all 𝜇𝜇 < 0. The source 
is considered null, and the initial condition is 𝐼𝐼(0,0, 𝜇𝜇) =
1, 𝜇𝜇 > 0, and 𝐼𝐼(0, 𝑥𝑥, 𝜇𝜇) = 0 for all 𝑥𝑥 > 0. 

The ANN inverse model has the detectors’ measurements 
𝑠𝑠0 = 𝛹𝛹(𝑠𝑠𝑠𝑠,3, 0),  𝑠𝑠1 = 𝛹𝛹(𝑠𝑠𝑠𝑠,3, 1)  as inputs and outputs the 
estimated absorption coefficient �̃�𝜅. For its training, we have 
used the direct solver to build a training set 
{(𝒅𝒅𝑡𝑡𝑟𝑟𝑠𝑠𝑡𝑡𝑛𝑛

(𝑡𝑡) , 𝜅𝜅𝑡𝑡𝑟𝑟𝑠𝑠𝑡𝑡𝑛𝑛
(𝑡𝑡) )}

𝑡𝑡=1

𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 of 𝑛𝑛𝑡𝑡𝑟𝑟𝑠𝑠𝑡𝑡𝑛𝑛 = 17  samples (patterns) 

with 𝜅𝜅(𝑡𝑡) = 0.1 + (𝑠𝑠 − 1)ℎ𝑡𝑡, ℎ𝑡𝑡 = 0.05 . The test set 
{(𝒅𝒅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

(𝑡𝑡) , 𝜅𝜅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
(𝑡𝑡) )}

𝑡𝑡=1

𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 has been generated with 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 32 with 

uniformly distributed random choices 0.1 < 𝜅𝜅(𝑡𝑡) < 0.9 (see 
Fig. 3). 

 

Fig. 3. Inverse problem 1. Training (circles) and test (stars) samples 

We have performed several numerical tests to choose an 
adequate MLP architecture. Here, we tried architectures 2 −
𝑛𝑛𝑛𝑛 × 𝑛𝑛ℎ − 1 (2 inputs, 𝑛𝑛𝑛𝑛 neurons on each 𝑛𝑛ℎ hidden layer, 
and 1  output). Training has been stopped when the loss 
function ℒ < 10−5. Due to the stochasticity of the training 
method, each test has been repeated three times. Table II 
presents the results with the hyperbolic tangent (𝑠𝑠𝑚𝑚𝑛𝑛ℎ) and 
the identity as activation functions in the hidden and in the 
output layers, respectively. The demanded averaged total 
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number of epochs 𝑛𝑛𝑒𝑒  and computational time 𝑡𝑡𝑐𝑐  are 
tabulated. Table III presents results for similar numerical test, 
but with the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 as activation function in hidden layers. 
We observe that, if MLP, with 𝑡𝑡𝑡𝑡𝑛𝑛ℎ  have demanded last 
resources to train with small architectures, the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 in an 
2 − 30 × 4 − 1 MLP was even better.  

TABLE II. INVERSE PROBLEM 1. TRAINING TESTS FOR MLP 
ARCHITECTURES WITH TANH AS ACTIVATION FUNCTION 

𝒏𝒏𝒉𝒉 𝒏𝒏𝒏𝒏⁄  𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏 𝟐𝟐𝟏𝟏 𝟐𝟐𝟏𝟏 𝟑𝟑𝟏𝟏 

𝟏𝟏 3807/ 
5,52 𝑠𝑠 

3281/ 
3.66 𝑠𝑠 

3160/ 
 3.66𝑠𝑠 

4711/ 
6.55𝑠𝑠 

9070/ 
5.01 𝑠𝑠 

𝟐𝟐 986/ 
2.3 𝑠𝑠 

818/ 
1.68 𝑠𝑠 

920/ 
1.27 𝑠𝑠 

764/ 
1.40 𝑠𝑠 

895/ 
1.24 𝑠𝑠 

𝟑𝟑 1294/ 
0.95 𝑠𝑠 

628/ 
1.05 𝑠𝑠 

737/ 
2.03 𝑠𝑠 

885/ 
1.01 𝑠𝑠 

710/ 
0.77 𝑠𝑠 

𝟒𝟒 1603/ 
1.41 𝑠𝑠 

1500/ 
3.18 𝑠𝑠 

1041/ 
1.94 𝑠𝑠 

1696/ 
2.51 𝑠𝑠 

634/ 
0.76 𝑠𝑠 

 

To enhance the training, we have then performed trials 
with data preprocessing. Inputs of the training samples have 
been scaled with the Standard Scaler. Setting the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 as 
activation function in hidden layers, several MLP 
architectures have been tested, and the results can be found 
in Table IV. The enhancement with preprocessing is notable, 
with the 2 − 30 × 4 − 1 providing the best results. 

TABLE III. INVERSE PROBLEM 1. TRAINING TESTS FOR MLP 
ARCHITECTURES WITH RELU AS ACTIVATION FUNCTION 

𝒏𝒏𝒉𝒉 𝒏𝒏𝒏𝒏⁄  𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏 𝟐𝟐𝟏𝟏 𝟐𝟐𝟏𝟏 𝟑𝟑𝟏𝟏 

𝟏𝟏 15670/ 
21.09 𝑠𝑠 

11368/ 
12.83 𝑠𝑠 

11884/ 
10.9 𝑠𝑠 

12697/ 
15.40 𝑠𝑠 

16679/ 
9.11 𝑠𝑠 

𝟐𝟐 8040/ 
4.64 𝑠𝑠 

14567/ 
8.5 𝑠𝑠 

956/ 
0.56 𝑠𝑠 

2398/ 
1.46 𝑠𝑠 

1577/ 
0.99 𝑠𝑠 

𝟑𝟑 2140/ 
1.42 𝑠𝑠 

521/ 
0.27 𝑠𝑠𝑠𝑠 

859/ 
0.55 𝑠𝑠 

698/ 
0.45 𝑠𝑠 

226/ 
0.15 𝑠𝑠 

𝟒𝟒 1992/ 
1.37 𝑠𝑠 

1015/ 
0.83 𝑠𝑠 

912/ 
0.64 𝑠𝑠 

396/ 
0.28 𝑠𝑠 

196/ 
0.24 𝑠𝑠 

 

TABLE IV. INVERSE PROBLEM 1. TRAINING TESTS OF MLP 
ARCHITECTURES WITH DATA PREPROCESSING 

𝒏𝒏𝒉𝒉 𝒏𝒏𝒏𝒏⁄  𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏 𝟐𝟐𝟏𝟏 𝟐𝟐𝟏𝟏 𝟑𝟑𝟏𝟏 

𝟏𝟏 3280/ 
1.48 𝑠𝑠 

1842/ 
0.85 𝑠𝑠 

374/ 
0.18 𝑠𝑠 

237/ 
0.13 𝑠𝑠 

230/ 
0.1 𝑠𝑠 

𝟐𝟐 647/ 
0.38 𝑠𝑠 

238/ 
0.2 𝑠𝑠 

333/ 
0.21 𝑠𝑠 

170/ 
 0.1 𝑠𝑠 

93/ 
0.06 𝑠𝑠 

𝟑𝟑 553/ 
0.34 𝑠𝑠 

230/ 
0.14 𝑠𝑠 

214/ 
0.14 𝑠𝑠 

145/ 
0.1 𝑠𝑠 

113/ 
0.07 𝑠𝑠 

𝟒𝟒 507/ 
0.33 𝑠𝑠 

227/ 
0.13 𝑠𝑠 

212/ 
0.14 𝑠𝑠 

174/ 
0.13 𝑠𝑠 

83/ 
0.06  𝑠𝑠 

 

Following the previous numerical tests, we have chosen 
to work with an 2 − 30 × 4 − 1  MLP model (two inputs, 
four hidden layers with 30  neurons each, and one output 
neuron), the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 and the identity as activation functions in 
the hidden and in the output layers, respectively. With 
approximately 𝑛𝑛𝑒𝑒 =  83, the model reaches a mean squared 
error ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 <  10−5  and coefficient of determination 
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

2 = 0.9998. The application of the trained model to the 
test data gave results with ℒ𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡 < 10−5 and 𝑅𝑅𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡

2 = 0.9998 
(see Fig. 4). 

 

Fig. 4. Inverse problem 1. Expected 𝜅𝜅 versus estimated �̃�𝜅. Train: circles. 
Test: starts. Line fitted to test data results: dashed line 

C. Inverse problem 2 – heterogeneous medium 
In the inverse problem 2, we assume a heterogeneous 

medium with piecewise constant absorption coefficients 

  𝜅𝜅(𝑥𝑥) = { 𝜅𝜅1  , 0 ≤ 𝑥𝑥 ≤ 0.5,
 𝜅𝜅2  ,   0.5 < 𝑥𝑥 ≤ 1.   () 

The inverse problem consists of estimating 0.1 ≤ 𝜅𝜅1, 𝜅𝜅2 ≤
0.9 from detectors measurements of the scalar fluxes at 𝑥𝑥𝑑𝑑,0 =
0, 𝑥𝑥𝑑𝑑,1 = 1 and at the times 𝑡𝑡𝑑𝑑,2 = 2.0 and 𝑡𝑡𝑑𝑑,3 = 3.0. The 
initial and boundary conditions, as well as the source, are the 
same as for inverse problem 1. 

The ANN inverse model has the detector measurements 
𝒅𝒅0 = (𝛹𝛹(𝑡𝑡𝑑𝑑,2, 0), 𝛹𝛹(𝑡𝑡𝑑𝑑,3, 0)) , 𝒅𝒅1 = (𝛹𝛹(𝑡𝑡𝑑𝑑,2, 1), 𝛹𝛹(𝑡𝑡𝑑𝑑,3, 1)) 
as inputs and outputs the estimated absorption coefficients �̃�𝜅1 
and�̃�𝜅2 . For its training, we have used the direct solver to 
compute the training set {(𝒅𝒅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

(𝑡𝑡) , 𝜿𝜿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
(𝑡𝑡) )}

𝑡𝑡=1

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛
of 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =

81  samples (patterns) with 𝜅𝜅1,2
(𝑡𝑡) = 0.1 + (𝑠𝑠 − 1)ℎ𝑡𝑡, ℎ𝑡𝑡 =

0.1. The test set {(𝒅𝒅𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡
(𝑡𝑡) , 𝜿𝜿𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡

(𝑡𝑡) )}
𝑡𝑡=1

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 has been generated with 

𝑛𝑛𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡 = 64  uniformly distributed random choices 0.1 <
𝜅𝜅1,2

(𝑡𝑡) < 0.9. 

For this inverse problem, we tested MLP architectures 
4− 𝑛𝑛𝑡𝑡 × 𝑛𝑛ℎ − 2 (4 inputs,  𝑛𝑛𝑡𝑡 neurons in each hidden layer 
 𝑛𝑛ℎ, and 2 outputs) with Standard Scaler preprocessing the 
input data. The training was stopped when the loss function 
ℒ < 10−5. Due to the stochasticity of the training method, 
each test has been repeated three times. Table V presents the 
results with the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 and the identity as activation functions 
in the hidden and in the output layers, respectively. It is 
tabulated the required average total number of epochs 𝑛𝑛𝑒𝑒 and 
computational time 𝑡𝑡𝑐𝑐. Like the inverse problem 1, the MLP 
architecture 4−30 × 4 − 2 provided the best results, which 
we now set to report the results to follow. 
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TABLE V. INVERSE PROBLEM 2. TRAINING TESTS FOR MLP 
ARCHITECTURES WITH DATA PREPROCESSING 

𝒏𝒏𝒉𝒉 𝒏𝒏𝒏𝒏⁄  𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏 𝟐𝟐𝟏𝟏 𝟐𝟐𝟏𝟏 𝟑𝟑𝟏𝟏 

𝟏𝟏 7516/ 
8.60 𝑠𝑠 

2662/ 
3.86 𝑠𝑠 

2628/ 
3.93 𝑠𝑠 

1480/ 
1.79 𝑠𝑠 

1292/ 
1.83 𝑠𝑠 

𝟐𝟐 1753/ 
3.30 𝑠𝑠 

1336/ 
2.29 𝑠𝑠 

1062/ 
1.47 𝑠𝑠 

467/ 
 0.85 𝑠𝑠 

448/ 
0.54 𝑠𝑠 

𝟑𝟑 3581/ 
6.76 𝑠𝑠 

1177/ 
2.06 𝑠𝑠 

752/ 
1.72 𝑠𝑠 

513/ 
1.07 𝑠𝑠 

417/ 
0.49 𝑠𝑠 

𝟒𝟒 3434/ 
7.05 𝑠𝑠 

1748/ 
3.81 𝑠𝑠 

565/ 
0.99 𝑠𝑠 

554/ 
0.92 𝑠𝑠 

266/ 
0.40 𝑠𝑠 

 

With approximately 𝑛𝑛𝑒𝑒 =  266, the model reaches a mean 
squared error ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 <  10−5  and coefficient of 
determination 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

2 = 0.9998 . The application of the 
trained model to the test data gave results with ℒ𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡 < 10−5 
and 𝑅𝑅𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡

2 = 0.9998. Figs. 5 and 6 show the expected versus 
estimated absorption coefficients for the training and test 
samples. The fitted least square line is also shown for the test 
data. 

 

Fig. 5. Inverse problem 2. Expected 𝜅𝜅 versus estimated �̃�𝜅1. Train: circles. 
Test: starts. Line fitted to test data results: dashed line 

 

Fig. 6. Inverse problem 2. Expected 𝜅𝜅  versus estimated �̃�𝜅2. Train: circles. 
Test: starts. Line fitted to test data results: dashed line 

Sensitivity test. To validate the robustness and stability of 
the proposed MLP model in this problem, a sensitivity test 
was applied, which involves adding uniformly distributed 
noise into the input data, more specifically in detectors 𝒅𝒅0 
and 𝒅𝒅1. Table VI shows the results of the mean squared error 
𝑅𝑅2 and the mean absolute squared error (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) for different 
levels of noise. 

The results indicate that the MLP model is relatively 
robust to low and moderate levels of noise in the input data. 
The noise is propagated to the output by a factor of 3.4 times. 
The 𝑅𝑅2 > 0.85 is reached even with a noise level up to 5%. 
Figs. 7 and 8 show the expected versus estimated κ1 and κ2  
of the test data set with noise levels of 2%, 3% and 4%. In the 
figures, the identify line is plotted as a dashed line as a guide. 
We observe the absence of outliers, which also indicates a 
good generalization of the ANN-MoC method. 

TABLE VI. INVERSE PROBLEM 2. SENSITIVITY TESTS 

Noise (%) 𝑹𝑹𝟐𝟐 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 (%) 

𝟏𝟏 0.994 3.84 

𝟐𝟐 0.981 7.10 

𝟑𝟑 0.948 11.06 

𝟒𝟒 0.929 13.27 

𝟏𝟏 0.873 16.95 

𝟔𝟔 0.809 20.43 

𝟕𝟕 0.726 25.26 

𝟖𝟖 0.758 23.15 

𝟗𝟗 0.483 35.52 

𝟏𝟏𝟏𝟏 0.658 33.31 

 

 

Fig. 7. Sensibility test for inverse problem 2. Comparison between expected 
κ1 versus estimated �̃�𝜅1 for different levels of input data noise 



ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2024 48
DOI:

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
I, 

Is
su

e 
2,

 J
ul

y 
20

24

10.5281/zenodo.12191947

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol XI, Issue 2, July 2024 

 

Fig. 8. Sensibility test for inverse problem 2. Comparison between expected 
κ2 versus estimated �̃�𝜅2 for different levels of input data noise 

IV. CONCLUSIONS 

In this paper, the ANN-MoC approach has been proposed 
to solve the inverse transient transport problem of estimating 
the absorption coefficient from scalar flux measurements at 
the boundaries of the model domain. The central idea is to fit 
an Artificial Neural Network (ANN) using samples generated 
by direct solutions computed by a Method of Characteristics 
(MoC) solver. 

Applications of two different inverse transport problems 
were reported, one with homogenous medium and the other 
two region medium with piecewise constant absorption 
coefficient. After several numerical tests, we found that small 
MLPs could provide good estimations. Better results were 
reached by preprocessing the input data with the Standard 
Scaler. A sensitivity test was also reported for the second 
problem. The results highlight the potential of the proposed 
method to be applied to a broader range of inverse transport 
problems. 

Further developments should aim to improve the direct 
solver. Improvements in the solution accuracy and, primarily, 
in computational performance are important to provide the 
ANN model with a higher-quality dataset. Solutions to more 
complex inverse transport problems could also benefit from 
the proposed approach, but once again, it will require 
additional improvements in the direct solver. Finally, the use 
of the proposed methodology for realistic problems depends 
on how good the direct transport model is for the intended 
application. 
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