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Abstract— Effective process monitoring, and control rely on 
precise dynamic models that can capture the inherent 
nonlinearities of chemical systems. However, rigorous modeling 
of complex industrial processes can be computationally 
demanding. Meta modeling using machine learning 
methodologies offers a viable approach to generate 
computationally efficient surrogate representations. Specifically, 
Echo State Networks (ESNs) are a promising neural network 
approach for meta-modeling nonlinear dynamical systems. ESNs 
simplify training through fixed input weights while they focus 
learning on output weights. This study explores the development 
of ESN-based digital twins for a nonlinear dynamic process. An 
ESN is employed to construct a meta-model of a simulated 
continuously stirred tank reactor with biochemical kinetic. The 
network was trained on input-output data obtained from the 
simulation of an ordinary differential equation system, and the 
performance was evaluated both in-sample and out-of-sample. 
The results indicate that the ESN meta-model can successfully 
approximate the underlying dynamics, accurately capturing 
temporal evolution. A closed-loop digital twin deployment using 
the ESN surrogate also showed reliable behavior. This work 
presents initial steps toward developing digital twins of chemical 
processes using ESN-driven meta-modeling. The findings suggest 
ESNs can effectively generate computationally efficient surrogate 
representations of nonlinear dynamical systems. Such digital 
twins hold promise for online process monitoring and optimized 
control of industrial plants. 

Keywords— Echo State Networks, Dynamic systems, Digital 
twins 

 

I. INTRODUCTION 
In recent years, rapid technological progress has resulted 

in substantial enhancements across diverse sectors, notably 
in enhancing quality and safety within chemical processes. 
The ubiquitous incorporation of computers into process 
management has empowered control over various variables, 
that include temperature, pressure, and chemical 
composition, thereby generating extensive and diverse data 
archives [1]. Design challenges necessitating intensive 
computational resources are increasingly prevalent in 
manufacturing industries [2]. Moreover, creating tools 

capable of analyzing data and constructing predictive 
mathematical models has become imperative for real-time 
process monitoring and control. 

Creating rigorous models that accurately capture the 
dynamics and nonlinearity of real systems may be 
impractical at plant sites, where rapid responses are crucial. 
One practical approach is to utilize metamodeling strategies 
[2][3] to tackle the challenges inherent in process systems. 
Widely utilized across engineering, computer science, and 
optimization, these strategies involve developing simplified 
models that approximate the behavior of complex systems 
or processes [4]. These simplified representations, named 
meta-models or surrogate models, aim to balance accuracy 
and computational efficiency. 

In this context, digital twins emerge as virtual 
representations capable of reflecting the behavior of 
physical systems in real-time, this shows potential for online 
monitoring and process optimization [5]. By generating 
simplified yet computationally efficient models, digital 
twins enable dynamic data analytics and rapid decision-
making to optimize industrial plant control and 
performance. 

Expanding on recent data science research, 
metamodeling can draw upon various machine learning 
techniques [2][6]. Artificial Neural Networks (ANNs) are 
widely recognized for their ability to approximate complex 
functions [7]. Modeled after the functioning mechanism of 
biological neurons, ANNs comprise an input layer, a hidden 
layer housing artificial neurons in quantities necessary to 
represent the data, and an output layer. Additionally, ANNs 
possess memory storage and learning capabilities, making 
them particularly suitable for dynamic and nonlinear 
systems. This work precisely investigates this characteristic 
regarding applying neural meta-models for generating 
digital twins of complex chemical processes [8][9]. The aim 
is to develop computationally efficient representations that 
approximately capture the underlying dynamics of these 
systems. 

Depending on the network architecture, various types of 
neural networks exist, including Feedforward Neural 
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Networks (FNNs) and Recurrent Neural Networks (RNNs). 
RNNs offer computational advantages for dynamic process 
systems owing to their inherent feedback loops. However, 
training traditional RNNs can be complicated due to issues 
like the "vanishing gradient" problem [10]. To address this, 
[11] introduced the Echo State Network (ESN). Unlike 
traditional RNNs that adjust all synaptic weights, ESNs 
maintain fixed input and recurrent connections, focusing 
solely on training output connections through a relatively 
simple linear regression process. This approach circumvents 
the complexities of training recurrent connections and 
mitigates gradient-related challenges. Consequently, ESNs 
present an effective solution for harnessing the power of 
RNNs while mitigating training complexities, particularly 
in scenarios where efficient learning is essential. 

This article proposes using an Echo State Network as a 
meta-model to approximate dynamic nonlinear models and 
evaluate the performance in a closed-loop application. This 
work assesses the potential of this approach for this purpose, 
analyzing the performance of different methodologies in 
modeling a CSTR reactor through the construction of a 
digital twin. Section 2 presents a brief background on the 
metamodeling problem. Section 3 elaborates a case study 
based on a simulated bioreactor and details the data 
acquisition procedure. The theory, rationale, and 
construction of the Echo State Network are described in 
Section 4, followed by the discussion of simulation results. 

The contribution of this article lies in presenting initial 
steps towards developing digital twins of chemical 
processes using ESN-driven meta-modeling. By 
demonstrating the efficacy of ESNs in generating 
computationally efficient surrogate representations of a 
classical nonlinear dynamical system, this work opens space 
for online process monitoring and optimized control of 
industrial plants. 

  

II. THE METAMODELING PROBLEM 
A meta-model (or surrogate model) can be conceived as 

a "model of a model" [6], functioning as a simplified 
representation of a high-fidelity simulation model [12]. It 
emulates the response by delineating the relationship 
between inputs (𝑈𝑈) and outputs (𝑌𝑌) based on data acquired 
with known precision or uncertainty [13]. The importance 
of metamodeling lies in its ability to balance accuracy and 
computational efficiency. Hence, metamodeling emerges as 
an essential approach to navigating real-world system 
intricacies, especially those characterized by nonlinear 
relationships, numerous variables, and complex behaviors. 

In industrial settings, meta-models are employed for 
tasks which necessitate the establishment of a (complex) 
relationship between the inputs and outputs of a process 
system. This relationship can be encapsulated by an 
extended meta-model equation that incorporates the 
feedback signal (1): 

𝑌𝑌𝑘𝑘 = 𝑓𝑓(𝑈𝑈𝑘𝑘, 𝑌𝑌𝑘𝑘−1) + 𝜖𝜖 (1) 

Where 𝑌𝑌𝑘𝑘 represents the current output, 𝑈𝑈𝑘𝑘 denotes the 
current inputs, 𝑌𝑌𝑘𝑘−1  is the previous output (feedback 
signal), 𝑓𝑓(⋅) is the relationship that incorporates inputs and 

feedback, and 𝜖𝜖 represents error or uncertainty in the meta-
model prediction. 

By offering a simplified representation of burdensome 
simulations, meta-models facilitate quicker evaluations and 
decision-making - crucial aspects in industries that demand 
real-time solutions. This approach enables approaching 
complex systems without the need of resource-intensive 
full-scale simulations, which can be computationally 
demanding and time-consuming. Some commonly used 
metamodeling techniques encompass polynomial surface 
response models, Kriging, Radial Basis Functions, Support 
Vector Regression, and Artificial Neural Networks 
[13][14]. These techniques generate approximated 
mappings from inputs to outputs. The choice depends on 
problem characteristics, available data, and required 
predictions.  

Metamodeling using neural networks adopts a data-
driven approach that harnesses the principles of ANNs to 
construct efficient approximations of complex systems. 
This methodology entails training the neural network on a 
dataset that reflects the system behavior under scrutiny. This 
dataset consists of input variables paired with corresponding 
output values, that facilitates the network identification of 
underlying patterns and correlations. Following training, the 
neural network can provide predictions for new input data, 
substantially which alleviates computational burdens 
compared to resource-intensive full-scale simulations. 

The increased processing speed has dramatically 
expanded the applicability of neural network-based 
metamodeling. For example, [15] employed a neural 
network as a meta-model to approximate a copper porphyry 
mine comminution circuit, which leads to a significant 
acceleration of simulations compared to traditional 
phenomenological models. Additionally, [16] utilized 
neural networks in the metamodeling of reactive transport, 
and this reduces computational time for scenarios requiring 
multiple realizations. These studies highlight the versatility 
of neural network-based metamodeling in improving 
efficiency, accuracy, and computational performance across 
various domains. 

Modeling and Data Generation 

The mathematical model employed to generate the data 
was adapted from [17], outlining the dynamic behavior of a 
bioreactor. The equations that govern substrate balance, S, 
and cell balance, 𝑋𝑋, are expressed by (2) and (3), 
respectively, while the reaction rate, 𝜇𝜇(𝑆𝑆), is defined by (4), 
where 𝐷𝐷 is defined as the dilution rate, that represents the 
ratio between the volumetric feed flow rate and the reactor 
volume, and 𝑆𝑆𝑓𝑓 stands for the substrate feed concentration. 

𝑑𝑑𝑆𝑆
𝑑𝑑𝑑𝑑 = 𝐷𝐷(𝑆𝑆𝑓𝑓 − 𝑆𝑆) − 𝜇𝜇(𝑠𝑠) 𝑋𝑋

𝑌𝑌𝑋𝑋/𝑆𝑆
 (2) 

𝑑𝑑𝑋𝑋
𝑑𝑑𝑑𝑑 = 𝜇𝜇(𝑆𝑆)𝑋𝑋 − 𝐷𝐷𝑋𝑋 (3) 

𝜇𝜇(𝑆𝑆) = 𝜇𝜇𝑚𝑚𝑆𝑆
𝐾𝐾𝑆𝑆 + 𝑆𝑆 (4) 

All code implementations were developed in Python, 
with the free Spyder development environment (version 
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3.9.16). The code was compiled and executed on a computer 
system featuring 128 GB of DDR4 RAM, and an Intel® 
Core I7-12700k processor operating at 5.00 GHz.  

This specific case study adopted a supervised training 
strategy to construct the neural model. This approach 
required the generation of input and output data. The input 
data was synthesized by a Random Gaussian Signal (RGS) 
algorithm [18]. The RGS technique is widely utilized for 
dynamic systems identification, which enables a thorough 
exploration of the input space. Consequently, it effectively 
stimulates the process response across diverse conditions.   

The input variables were the dilution rate and substrate 
feed concentration, with mean values of 0.1 h⁻¹ and 10.0 g 
L⁻¹, respectively. Each variable displayed variations of ± 0.1 
h⁻¹ and ± 2.5 g L⁻¹. A total of 2500 samples were generated 
and collected at intervals of 0.25 h. The sampling interval 
was modified to 8 h to generate the second dataset, while 
the other parameters were kept constant. As for the output 
data, represented by 𝑆𝑆 and 𝑋𝑋, these were derived by solving 
the system of ordinary differential equations outlined in (2) 
and (3), using the solve_ivp function from the 
scipy.integrate library for this purpose. Gaussian random 
noise was added to the simulated result to make output data 
more complex and realistic, with a standard deviation of 
5%. This makes the resulting data more complex while 
pushing the meta-model to discover the underlying patterns 
in a way that enhances its robustness against noise and 
variability when it transfers to actual operation. 
Subsequently, all datasets were organized and stored within 
a spreadsheet. 

The generated data is showcased in Figs. 1-4 which 
illustrate the obtained data with higher (Figs. 1-2) and lower 
frequency (Figs. 3-4). The red data points indicate outputs 
with the addition of measurement noise, which was 
introduced to a  better approximate reality and attenuate 
potential overfitting. 

 
Fig. 1. Input data for the first dataset 

 
Fig. 2. Output data for the first dataset 

 
Fig. 3. Input data for the second dataset 

 
Fig. 4. Output data for the second dataset 

  

III. ECHO STATE NETWORK 
 

Acknowledging the potential of RNNs, [8] introduced a 
groundbreaking neural network architecture called the Echo 
State Network (ESN). The primary aim of this architecture 
is to harness the capabilities of effectively addressing 
complex problems while it simplifes the learning process. 
In the conventional training of ANNs, with the adjustment 
of synaptic weights across input, output, and feedback 
layers can impose substantial computational demands, often 
requiring significant computational resources. However, 
Jaeger's innovative network design focuses solely on 
training output weights, accomplished through a relatively 
straightforward linear regression process. This approach 
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offers significant advantages in terms of computational 
efficiency and streamlining the intricate task of fine-tuning 
complex feedback loops. 

The ESN remarkably simplifies the training process by 
compartmentalizing the learning process into distinct stages 
- initially training output weights while keeping other 
weights fixed. This streamlined approach enhances 
computational efficiency and facilitates faster convergence 
during the training phase. Furthermore, the methodology 
unlocks potential applications in scenarios where efficient 
learning is paramount. The innovative design of the ESN 
offers a promising pathway to address challenges related to 
training complexity, which makes it well-suited for 
scenarios demanding both computational efficiency and 
enhanced learning performance. 

In this implementation, the ESN network algorithm was 
coded following the equations outlined by [8], with specific 
hyperparameters maintained at fixed values (Table I). These 
predetermined values were determined empirically. An 
optimization method was utilized and implemented through 
Python programming to identify the optimal 
hyperparameters - neuron count, sparsity, and leaking rate. 
Following this, the resulting network was validated using 
the fine-tuned hyperparameters. 

TABLE I.  NETWORK HYPERPARAMETERS 

Hyperparameter Value 

Reservoir size 1222 

Leaking rate 0.6964 

Sparsity 0.3536 

Spectral radius 0.70 

Train fraction 0.35 

Ridge 4E-4 

Noise level 1E-5 

Random seed 13042023 

 

IV. CONTROLLER TUNING AND CLOSED-LOOP 
Another test was applied to evaluate the performance in 

a closed-loop simulation, allowing for the assessment of the 
feasibility of applying the trained network as a meta-model 
(that is, the digital twin). The control objective was to 
maintain cell concentration (X) around desired values, and 
it considers the substrate concentration in the feed (Sf) as 
the disturbance and the dilution rate (D) as the manipulated 
variable. For this purpose, we used a PI controller with the 
velocity algorithm. 

A transfer function of the reactor dynamics was obtained 
to tune the controller, with a step test of -5% on D, 
performed on the differential model from its initial 
conditions. The steady-state response obtained was Xs = 4.5 
g L⁻¹ and Ss = 1.0 g L⁻¹. With the approach of [19], it was 
possible to approximate the process with a first-order plus 
dead time (FOPDT) system. Fig. 5 comparatively illustrates 
the original process (differential model), represented by red 

points, and the approximated process. The parameters 
obtained through such an approach are shown in Table II.  

 
Fig. 5. Process simulation and obtained model 

 

TABLE II.  PROCESS PARAMETERS 

 

Parameter Value 

KP (L g -1 h-1) -6.6642 
θ (h) 0.0700  

𝜏𝜏 (h) 1.0050 

 
After conducting tests on different controllers, three 

tuning techniques were applied: Internal Model Control 
(IMC), Integral of Time multiplied by Absolute Error for 
servo test (ITAE), and manual fine-tuning [17]. The 
parameters for each tuning technique are described in Table 
III. It was concluded that the manually tuned controller was 
the best choice for this study, even though it was a more 
conservative option. The manually tuned controller yielded 
a favorable result of less oscillation in the manipulated 
variable during closed-loop tests. Additionally, it 
demonstrated a slight difference in response time compared 
to the other controllers examined. The gain margin of the 
manually fine-tuned controller was 56.8437, which is 
significantly higher than the gain margins of the IMC 
(22.9541) and ITAE-servo test (3.0869) methods. This 
result suggests that the manually fine-tuned controller is 
more robust than the other methods. As a result, the 
manually fine-tuned controller was chosen due to its quick, 
highly stable, and oscillation-free response.   

The results of the closed-loop simulation using the selected 
controller are presented in Figs. 6-7. Fig. 6 illustrates the 
behavior of the manipulated and disturbance variables, 
while Fig. 7 depicts the controlled variable with its setpoint, 
along with the other output. 

TABLE III.  TUNING METHODS AND CONTROLLER 
PARAMETERS 

Parameter 
Tuning method 

IMC ITAE 
(servo test) Manual 

KC (L g -1 h-1) -0.15164 -1.12761 -0.06123 
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𝜏𝜏I (h) 1.00500 1.00752 6.70000 

 

 
Fig. 6. Inputs of the closed-loop 

To assess the neural network efficacy in accurately 
representing the behavior of the simulated system, as 
required for a digital twin, its response was evaluated within 
a closed-loop control framework. Within this framework, 
the control actions computed for the original process (based 
on the differential model) with the tuned proportional-
integral (PI) controller were integrated as one of the 
network's inputs. Moreover, these inputs encompassed 
process disturbance information and a feedback signal 
generated by the network predictions rather than simulated 
measurements from the differential model simulation. 
Consequently, the neural network can autonomously adapt 
over time, dynamically responding to the evolving process 
inputs. 

 
Fig. 7. Outputs of the closed-loop 

V. RESULTS 
After fine-tuning the hyperparameters, the network 

performance was evaluated on both datasets. The higher-
frequency dataset was used to assess the network predictive 
capacity. The neural network demonstrated exceptional 
training performance, accurately predicting the test data and 

effectively capturing the underlying dataset patterns and 
relationships (Fig. 8). This success highlights the robust 
ability of the model to generalize from complex training 
examples to unseen data, this showcases its deep 
understanding of system dynamics. 

An autocorrelation analysis of the training modeling 
errors (residual) indicated significant autocorrelation only at 
lag = 0, resembling a Dirac delta function (Fig. 9), which 
confirms that the residual distribution follows a white noise 
correlogram pattern. We can see this result as an indication 
of the absence of systematic errors or patterns in the model 
predictions. Additionally, a white noise correlogram pattern 
suggests that the model has effectively captured all relevant 
information from the data, and the predictions are based on 
genuine signals rather than noise. 

The following run evaluates the pre-trained network 
adaptability to a distinct scenario (second dataset), as 
illustrated in Fig. 10-11. As can be seen, the successful 
prediction of the second test dataset resulted in a residual 
distribution that also adheres to a white noise correlogram 
pattern. Remarkably, despite being trained with higher-
frequency data, the model ability to accurately represent 
lower-frequency data underscores its robustness and 
versatility in capturing the system dynamics across different 
temporal scales. 

In the closed-loop control scenario, the neural network 
functioned autonomously, providing its feedback signal 
based on the predicted outputs. However, Fig. 9 reveals a 
systematic deviation between the predicted and actual 
responses, likely stemming from the absence of feedback 
control dynamical effects in the training data. This 
discrepancy highlights the challenge of accurately capturing 
real-time system behavior under closed-loop control 
conditions. 

 
Fig. 8. Network performance for the first dataset 
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Fig. 9. Network residual analysis for the training of the first run 

A bias b(k)was introduced to mitigate this issue, and 
this represents the disparity between the simulated process 
measurements, y_m(k), and the predicted outputs, 
\hat{y}(k). This adjustment on the predicted outputs, being 
\hat{y}\left(k\right)+b\left(k-1\right) with b(0)=0, yielded 
a maximum relative error of just 1.1%, compared to the 
2.7% observed without bias. The graphical representations 
that depict the predictions in the absence and presence of 
bias correction are presented in Figs. 12 and 13, 
correspondingly. 

Detailed performance metrics for the training, testing, 
and closed-loop application phases are provided in Table 
IV. The findings demonstrate the exceptional predictive 
capabilities of the network, which achieves outstanding 
performance in forecasting output data despite being 
trained on a comparatively small dataset —  and contrasts 
with the higher training percentages commonly used in the 
literature. Notably, the network accurately captured the 
output dynamics in the first dataset with remarkable 
precision. Furthermore, the successful modeling of a 
scenario with lower variability in the second dataset 
suggests its versatility and robustness. Thus, inferring that 
the acquired meta-model fits both scenarios is reasonable. 
Moreover, the closed-loop results showcase the neural 
network potential as a virtual representation that reflects 
real-time process responses, thereby mimicking real-world 
scenarios with fidelity. 

 

TABLE I.  NETWORK PERFORMANCE METRICS 

Metrics 
Dataset 1 Dataset 2 Closed loop 

Training Test Test Without 
bias 

With 
bias 

R2 0.9790 0.9490 0.9812 0.9930 0.9996 

MSE 2.6676E-02 3.14347E-02 4.6535E-02 0.0007 0.0001 

ExpVar 0.9790 0.9491 0.9812 0.9979 0.9998 

 

 
Fig. 10. Network performance for the second dataset 

 
Fig. 11. Network residual analysis for the training of the second run 

 
Fig. 12. Network performance for the closed-loop, without bias 
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Fig. 13. Network performance for the closed-loop, with bias 

VI. CONCLUSION 
This study employed an Echo State Network (ESN) as a 

meta-model to tackle the complexities of a classical 
nonlinear bioreactor. Unlike traditional Recurrent Neural 
Networks, ESNs simplify learning by maintaining fixed 
input and recurrent connections, while training only output 
connections through linear regression. This approach 
mitigates the challenges associated with training recurrent 
connections. 

The outcomes of our study showcase the robust 
predictive capabilities of the ESN, adeptly handling noisy 
data and limited samples across a broad spectrum of 
oscillations. These results underscore the ESN adaptability 
to the diverse scenarios commonly encountered in industrial 
contexts. The results of the closed-loop test validate the 
efficacy of ESNs, with maximum errors limited to just 3%. 
This underscores the potential for further exploration of 
ESN applications in constructing digital twins, which 
represents a paradigm shift from traditional models towards 
real-time control and monitoring contexts. 

Moreover, the findings confirm the practical and 
effective utility of the ESN for metamodeling in industrial 
processes. The versatility and potential integration of ESNs 
into Process Control and Monitoring practices facilitate 
precise simulations and streamline optimization procedures, 
thereby enhancing the efficiency and effectiveness of 
industrial processes. However, it is essential to 
acknowledge the ongoing need for evaluating and 
discussing alternative strategies to enhance the network 
predictive accuracy, given the inherent complexity and 
challenges inherent in industrial process control. Continued 
research in this area promises to unlock further 
advancements in ESN applications, driving innovation and 
optimization within industrial processes. 
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