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Hybrid CNN-Transformer Model for Severity 
Classification of Multi-organ Damage in Long 

COVID Patients 
   

 

 

 

 

 
Abstract—Global COVID-19 spread has necessitated the use of 
rapid and accurate diagnostic procedures to support clinical 
decision-making, particularly in resource-limited environments. In 
this work, a hybrid deep model combining Convolutional Neural 
Networks (CNN) and Transformer architecture is proposed to 
diagnose COVIDx CXR-3 dataset chest X-ray images into three 
classes of severity levels: Mild, Moderate, and Severe. The 
methodology incorporates data preprocessing techniques such as 
resizing, normalization, augmentation, and SimpleITK organ 
segmentation. A DenseNet121-based CNN extracts local features, 
while global dependencies are extracted by a Vision Transformer. 
The features from both are fused and fed to a classification head to 
generate the predictions. The training was done in PyTorch with 
learning rate 0.0001, batch size 32 and optimized with Adam 
optimizer for 50 epochs. Performance measures like Accuracy, 
Precision, Recall, F1-Score, and Confusion Matrix were computed 
to measure performance. Results show that the CNN-Transformer 
model which outperforms the CNN-only model that achieved 88%. 
This integration has demonstrated a better capability in severity 
classification and great potential in helping clinicians prioritize 
care, optimize treatment plans, and allocate resources, thereby 
improving outcomes in COVID-19 management. 

Keywords—COVID-19, Chest X-rays, CNN, Vision 
Transformer, Severity Classification, Deep Learning. 

 

I. INTRODUCTION 

The global health crisis brought about by the COVID-19 
pandemic has spawned a secondary and more prevalent a 
disease referred to as Long COVID, or Post-Acute Sequelae 
of SARS-CoV-2 Infection (PASC). Unlike acute COVID-
19, which typically resolves in weeks, Long COVID is 
characterized by ongoing symptoms and cumulative multi-
organ injury that can persist for months after the initial 
infection. Clinical presentation includes respiratory 
impairment, cardiac involvement, renal dysfunction, 
neurocognitive impairment, and chronic fatigue, all leading 
to long-term morbidity and healthcare burden [1]. Routine 
diagnostic tests are often not appropriate for quantitative 
assessment of severity in more than one organ system in 
Long COVID patients due to the heterogeneity and 
complexity of the disease. Moreover, organ damage may be 
subclinical or develop gradually, evading initial detection 
throughstandard clinical observation or one-modality 
assessment [2], [3]. 

 

 

 

Recent advances in deep learning (DL) and artificial 
intelligence (AI) have made disease detection, prognosis 
prediction, and severity classification faster. Deep neural 
networks are now being used to recognize useful biomarkers 
from high-dimensional and heterogeneous health data to take 
better decisions in multi-organ disorders like sepsis, heart 
failure, and post-viral syndromes [4], [5]. Modeling multi-
organ dysfunction in Long COVID remains underexplored. 

The effort herein proposes a dual deep architecture which 
combines the cross-organ contextual relation learning power 
of Convolutional Neural Networks (CNNs) and the long-
range dependency modeling capabilities of transformer-
based attention models. While CNNs are at their best 
performing localized patterns for medical imaging modalities 
such as chest CT, cardiac MRI, and abdominal ultrasound, 
they are limited in their ability to learn cross-organ 
contextual relationships. Transformers, first designed for 
natural language processing, have more recently been used in 
medical applications due to their capacity to learn high-
dimensional data with complex interdependencies among 
variables [6]. This paper has three primary contributions: (i) 
A novel hybrid CNN-Transformer model specifically 
designed to measure and correlate multi-organ damage 
severity in Long COVID, supplementing the limitations of 
one-modality assessments; (ii) Integration of heterogeneous 
data sources (image, laboratory tests, and metadata) to 
capture the systemic profile of PASC, permitting enhanced 
patient evaluation than existing AI technology; and (iii) 
Development of a clinically actionable approach for risk 
stratification, which can support healthcare clinicians in 
prioritization of at-risk patients as well as personalizing long-
term care strategies: a critical requirement in resource-limited 
settings. 

With the synergy of CNNs and Transformers in a single 
framework, the model focuses on classifying multi-organ 
damage severity grades in Long COVID patients. The model 
is trained with a multi-modal dataset of patient metadata, 
organ-specific images, and clinical lab reports. By doing so, 
the work provides an approach that can facilitate the 
development of a reliable AI-aided device for patient 
stratification risk, guiding treatment priorities, and enabling 
disease management in the long term. 
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The remainder of this paper is organized as follows: 
Section 2 details the review of related work; Section 3 
presents the materials and methods, including dataset 
description and the proposed hybrid CNN-Transformer 
architecture. Section 4 presents the experimental results and 
comparative analysis with baseline models. Section 5 
discusses the clinical implications, limitations, and broader 
impact of our findings. Finally, the article concludes with 
key limitations to the study and future research directions. 

 
II. REVIEW OF RELATED WORK 

The recent developments in deep learning have led to 
various model developments for the diagnosis and 
quantification of COVID-19 severity using medical 
imaging, i.e., chest X-rays and CT scans. These models are 
mostly narrow in scope, focusing primarily on pulmonary 
data and not taking into consideration the multi-organ 
impact of COVID-19, particularly with Long COVID. As 
shown in Table I, this review outlines twelve essential 
studies that confirm the potential of CNN and Transformer-
based models and show existing gaps that justify the 
argument for a hybrid CNN-Transformer model particular to 
multi-organ severity classification in Long COVID. 

Lara et al. (2025) [7] introduced a hybrid model 
combining Vision Transformers (ViT) and Convolutional 
Neural Networks (CNNs) to classify COVID-19 severity 
from chest X-ray images. Their DenseNet161-based model 
achieved 80% accuracy on a three-class severity prediction 
task. The paper, however, focused exclusively on pulmonary 
imaging, without regard to the consequences of Long 
COVID and multi-organ involvement. Park et al. (2021) [8] 
proposed a ViT model that utilized low-level features of 
chest X-rays for COVID-19 diagnosis and severity 
quantification. Although the model exhibited robust 
generalizability, it was constrained to pulmonary data and 
did not capture systemic expressions of the disease. Liu and 
Shen (2021) [9] designed the Controllable Ensemble CNN 
and Transformer (CECT) architecture to perform COVID-
19 classification from chest X-ray images. Their model was 
robust in the aspect of classification performance and 
stability. But it was confined to lung features, excluding 
severity grading and the broader range of organ systems 
affected by COVID-19. Xu et al. (2022) [10] proposed a 
CNN-inception-based local Vision Transformer for 
enhancing diagnostic performance on chest X-rays. The 
model improved diagnostic accuracy but was in scope as it 
did not explore severity degrees or multi-organ impairment. 
Khan et al.(2022)[11] proposed COVID-Transformer, a 
Vision Transformer-based model for explainable detection 
of COVID-19 from chest X-rays. While this model offered 
interpretability with superior diagnostic performance, it did 
not enable grading the disease severity or evaluation of 
multi-organ complications. Dos Santos et al. (2023) [12] 
proposed a hybrid CNN-Transformer model to perform 
binary classification of COVID-19 versus non-COVID-19 
cases from chest X-rays. While accurate in detection, the 

model was limited in being binary and did not incorporate 
severity stratification or information beyond the lungs. 
Zhang et al. (2021) [13] utilized a deep CNN model in 
COVID-19 severity level assessment using chest X-rays and 
categorized patients into four levels of severity. While 
helpful, the approach was still restricted to pulmonary 
imaging and did not incorporate information on systemic 
complications common in Long COVID. Chen et al. (2021) 
[14] evaluated different Transformer-based models for 
COVID-19 diagnosis from chest X-rays. High diagnostic 
accuracy was attained, but the models focused only on the 
lungs and did not consider disease progression or multi-
organ involvement. Wang et al. (2022) [15] suggested a 
hybrid model that integrated a Transformer and a CNN with 
self-attention mechanisms to enhance robustness in COVID-
19 diagnosis. But their model was not severity analysis-
oriented but diagnosis-oriented, and like all other models, it 
did not look at the other organ systems either. Rahimzadeh et 
al. (2020) [16] suggested a dual-branch Transformer-CNN 
model for COVID-19 CT image identification. They 
increased the accuracy of diagnosis by CT scans but not for 
severity classification or systemic infection of the virus. 
Horry et al. (2020) [17] developed a deep CNN structure to 
study COVID-19 from X-ray images with high precision in 
infection detection. Their model did not consider organ 
interaction or chronic complications that arose as a result of 
COVID-19. Narin et al.(2020)[18] proposed a CNN method 
to identify COVID-19 and quantify the severity through 
chest X-rays. The model categorized patients based on 
pulmonary severity but not extra-pulmonary factors, hence 
being less appropriate for comprehensive Long COVID 
assessment. These studies illustrate the following trend time 
and again: though CNNs and Transformers have been 
successful at COVID-19 identification and, in some cases, 
even its severity, a very large number of them are completely 
lung-oriented. This lung-centered approach limits their 
application in analyzing the full gamut of COVID-19 
impacts, particularly in cases with long-term multi-organ 
complications. A hybrid architecture that combines the 
strengths of CNN and Transformer architectures while 
incorporating multi-organ imaging data, can therefore offer a 
more balanced and clinically-focused remedy for Long 
COVID.  

 
TABLE I. Summary Table of Reviewed Works 
 
 

S/N Author(s) Year Methodology Limitation 
1 Lara et al. 

[7] 
2025 Hybrid ViT and 

CNN 
(DenseNet161) 
for severity 
classification from 
X-rays 

Focused only 
on pulmonary 
imaging; no 
Long COVID 
or multi-organ 
involvement 
considered 

2 Park et al. 
[8] 

2021 ViT using low-
level chest X-ray 
features for 
diagnosis and 
severity 

Limited to 
pulmonary 
data; ignored 
systemic 
manifestations 
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3 Liu and 
Shen [9] 

2023 CECT model 
combining CNN 
and Transformer 
for image 
classification 

Only 
pulmonary 
features 
considered; 
no severity or 
multi-organ 
context 

4 Xu et al.  
[10] 

2022 Local CNN-based 
Vision 
Transformer for 
COVID-19 
diagnosis 

Did not 
explore 
severity 
classification 
or multi-organ 
damage 

5 Khan et al. 
[11] 

2022 Vision 
Transformer 
(COVID-
Transformer) for 
interpretable 
COVID-19 
detection 

No severity 
grading or 
assessment of 
complications 
beyond lungs 

6 Dos Santos 
et al.  
[12] 

2023 CNN-Transformer 
hybrid for binary 
classification from 
chest X-rays 

Binary only 
(COVID-19 
vs. non-
COVID-19); 
ignored 
severity and 
multi-organ 
data 

7 Zhang et al. 
[13] 

2021 Deep CNN model 
for four-level 
severity 
classification 

Focused only 
on lungs; 
excluded 
systemic 
complications 

8 Chen et al. 
[14] 

2021 Evaluation of ViT 
architectures for 
COVID-19 
diagnosis from X-
rays 

No inclusion 
of disease 
progression or 
multi-organ 
impact 
 

9 Wang et al. 
[15] 

2022 Transformer-CNN 
hybrid with self-
attention for 
robust diagnosis 

Focused on 
diagnosis 
only; no 
severity 
assessment or 
systemic 
evaluation 

10 Rahimzadeh 
et al.  
[16] 

2020 Dual-branch 
Transformer-CNN 
for CT image 
recognition 

Improved 
detection but 
lacked 
severity and 
multi-organ 
analysis 

11 Horry et al. 
[17] 

2020 Deep CNN 
framework for 
COVID-19 
classification from 
X-rays 

High accuracy 
but ignored 
chronic or 
multi-organ 
effects 

12 Narin et al. 
[18] 

2020 CNN model for 
severity 
assessment from 
chest X-rays 

Pulmonary-
only 
approach; no 
extra-
pulmonary or 
Long COVID 
relevance 

II. METHODOLOGY 

A. Research Design 

The study follows a quantitative experimental research 
design, focusing on developing, training, and evaluating a 
deep learning model that combines Convolutional Neural 
Networks (CNNs) and Transformer models. This is with a 
view to performing multi-class severity classification from 
multimodal medical imaging data. 

B. Data Collection 

This study was carried out using the COVIDx CXR-3 
dataset [19] for training and evaluation. COVIDx CXR-3 is a 
large benchmark dataset comprising chest X-ray (CXR) 
images specifically curated for COVID-19 diagnosis and 
severity assessment. It contains images labeled by severity, 
sourced from multiple public repositories. Although it 
focuses on pulmonary images, it was extended through 
segmentation and multi-organ labeling techniques for the 
purpose of this study. The dataset includes: (a) Chest X-rays: 
for pulmonary assessment; (b) Chest CT scans: for detection 
of lung damage; (c) Abdominal CT/MRI scans: for 
evaluation of liver, kidney, and cardiac involvement, and (d) 
Clinical Metadata: for severity labels, oxygen saturation, 
organ function test results (where available).  

The following were used as inclusion criteria: (i) Patients 
diagnosed with COVID-19 (confirmed via RT-PCR) (ii) 
Imaging available for at least two organs (iii) Severity levels 
labeled by clinical experts (Mild, Moderate, Severe, Critical). 

C. Data Preprocessing 

The following preprocessing steps were applied to ensure 
model compatibility and consistency: (i) Image Resizing: All 
images resized to 224×224 pixels (ii) Normalization: Pixel 
values scaled between 0 and 1 (iii) Augmentation: Rotation, 
flipping, and noise injection to increase robustness (iv) Label 
Encoding: Mapping severity labels into numeric classes. 
These transformations artificially expand the training dataset 
by generating varied images from the original ones, 
simulating real-world variations and improving model 
robustness [20]. (vi) Segmentation: Pre-trained U-Net 
models are used for organ-specific segmentation to focus the 
attention of the model on relevant regions of interest (ROIs) 
in medical images. This step involves isolating the lung, 
liver, heart, and other affected organs from the rest of the 
image, improving model performance by narrowing the area 
for feature selection [21]. 

D. Justification for Not Performing “Explicit” Feature 
Selection 

Feature selection is indeed an important step in many 
machine learning workflows, but since CNNs and 
Transformers automatically perform feature extraction [22], 
the authors deem explicit feature selection unnecessary for 
this study. Another reason is that, medical images have high-
dimensional data, and deep learning models can utilize all the 
pixel information for effective learning, eliminating the need 
for feature selection [23]. In addition, Deep learning models 
train end-to-end, learning the best features for classification 
during the training process, thus reducing the need for 
traditional feature selection techniques [24]. 

E.    Label Encoding 

Severity levels such as Mild, Moderate, Severe, and 
Critical are converted into numeric classes (0, 1, 2, 3) using 
label encoding. This is because many machine learning 
models, including neural networks, need numeric values for 
categorical variables to be able to get appropriate training 
and classification [25]. 
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Fig.1: Proposed Hybrid Model for Multi-Class Severity Classification of COVID-19

F.   Model Architecture 

To facilitate the purpose of obtaining robust classification 
of COVID-19 severity with multi-organ characteristics, a 
hybrid deep network model utilizing the strengths of 
Convolutional Neural Networks (CNNs) and Vision 
Transformers (ViTs) is utilized. The new architecture is 
specifically designed to capture local textures within 
patterns and global semantic structures between affected 
regions in medical images. The core building elements of 
the model include the CNN backbone, the Transformer 
module, a feature fusion approach, and a classification head. 
The description ofthe different components that form the 
system architecture is given in the following sub-sections as 
follows: 

(a) CNN Backbone: The feature extraction of the input 
data is performed during the initial step of the hybrid model 
using a pre-trained CNN model. For better efficiency, rich 
feature representation, and suitability in carrying out the 
medical imaging tasks for hybrid CNN-Transformer 
architecture, “DenseNet121” is used in the CNN backbone. 
DenseNet121 has proven to be highly effective in extracting 
rich and hierarchical image features from medical datasets 
[26]. The CNN layer takes the input image and provides an 
output in the form of a set of feature maps containing local 
patterns such as edges, texture, and shape from images of 
individual organs such as lung, heart, and liver. Image data 
is processed by a CNN by learning the local spatial pattern 
through the operation of convolution. This can be expressed 
as follows: 

 

(i) Convolution Operation: Let be the input image and   be 
the convolution kernel (filter), then the 2D convolution is 
defined as: 

S(i,j) = (I*K).(i,j) = ∑ ∑ 𝐼𝐼(𝑖𝑖 + 𝑚𝑚, 𝑗𝑗 + 𝑛𝑛). 𝐾𝐾(𝑚𝑚. 𝑛𝑛)𝑛𝑛𝑚𝑚       (1) 
Where: 
(i,j) is the output pixel position while m.n iterate over the filter 
size. 
(ii) Activation Function: After convolution, an activation 
function such as ReLU is applied: 

     A(i,j) = max(0,S(I,j))          (2) 
(iii) Pooling: To reduce spatial dimensions: 

   P(i,j) = max(m,n)window A(𝑖𝑖 + 𝑚𝑚, 𝑗𝑗 + 𝑛𝑛)             (3) 
These feature maps are iteratively repeated and the final 
feature maps are passed into a fully connected layer for 
classification. 
(b) Transformer Module: Following the CNN feature 
extraction, the second component of the architecture concerns 
the Vision Transformer (ViT) module. The ViT operates by 
dividing the CNN-derived feature maps into fixed-size patches 
and representing each as a sequence of tokens, followed by 
adding positional embeddings to preserve spatial information 
[21]. Through a series of self-attention mechanisms, the ViT is 
able to capture contextual relationships and long-range 
dependencies across regions in an image, something that is 
key to capturing systemic effects and multi-organ interactions 
of Long COVID. 
Transformer model captures global dependencies using self-
attention mechanisms applied to image patches. This can be 
mathematically represented as follows: 

Feature 
Fusion 

Classification Head 
 

Prediction of Level 
Severity of Long 

COVID-19 (Mild, 
Moderate, Severe) 

 

Input Data 
 Feature Maps 

Transformer 
Module 

 

CNN Back bone 
 
 
 
 
 
 
 

DenseNet121 
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(i) Patch Embedding: The input image  𝑥𝑥𝑅𝑅𝐻𝐻∗𝑊𝑊∗𝐶𝐶 is split into 
patches of size. Each patch is flattened and linearly projected: 

𝑧𝑧0𝑖𝑖= 𝐸𝐸. 𝑥𝑥𝑖𝑖 + 𝑝𝑝𝑖𝑖                       (4) 
Where: 

𝑧𝑧0𝑖𝑖= 𝐸𝐸. 𝑥𝑥𝑖𝑖 + 𝑝𝑝𝑖𝑖   
𝑥𝑥𝑖𝑖 is the i-th patch, 
𝐸𝐸 is a learned embedding matrix, 
𝑝𝑝𝑖𝑖 is the positional encoding. 

(ii) Multi-Head Self-Attention (MHSA): Each Transformer 
layer computes attention as: 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠𝑥𝑥 (𝑄𝑄𝑄𝑄

𝑇𝑇

√𝑑𝑑𝑘𝑘
)V         (5) 

Where: 
𝑄𝑄 = 𝑋𝑋𝑊𝑊𝑄𝑄, 𝐾𝐾 = 𝑋𝑋𝑊𝑊𝑄𝑄 ,𝑉𝑉 = 𝑋𝑋𝑊𝑊𝑉𝑉 are query, key, and value 
matrices 𝑑𝑑𝑘𝑘 is the dimensionality of keys. 
Multi-head attention concatenates multiple such attention 
outputs. 
(iii) Feed forward Network: A position-wise MLP is 
applied: 
𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) = max(0, 𝑥𝑥𝑊𝑊1+ 𝑏𝑏1 )𝑊𝑊2+𝑏𝑏1        (6) 

Each Transformer block consists of Layer Norm, MHSA, and 
FFN components with residual connections. 
 
G. Feature Fusion 

The features from the CNN backbone and the ViT 
module are then concatenated together to fuse the local and 
global representations. Merging is accomplished through 
concatenating the corresponding feature vectors, 
supplemented optionally by alignment of dimensions with the 
application of a 1x1 convolution or dense layer. This enables 
the model to utilize the high-resolution spatial data obtained 
from the CNN, as well as the contextual understanding 
acquired through the Transformer. 

 
H. Classification Head 
The merged feature vector is then passed through a fully 
connected neural network (FCNN), or the classification head. 
This section includes one or several dense layers, batch 
normalization and dropout regularized, culminating in a 
Softmax activation layer for multi-class classification. The 
output layer classifies the severity level of COVID-19 (e.g., 
Mild, Moderate, Severe) so that the model can yield 
interpretable and actionable results. 
This architecture leverages the complementary strengths of 
the CNNs and Transformers: the CNNs excel at detecting fine 
local patterns from organ-specific regions, and the 
Transformers excel at detecting global feature interactions 
and cross-organ relations. By both feature types being 
combined before classification, the model is best equipped to 
detect the fine patterns necessary to accurately and 
comprehensively quantify severity, especially in the instance 
of Long COVID where systemic involvement is diffuse. 
The above-described preprocessing operations were done in 
Python 3.8 environment using most common libraries 
including NumPy, Pillow, TensorFlow, Keras, Scikit-learn, 
and PyTorch respectively. 
 
 

 

I. Model Training and Validation 
To achieve efficient learning and accurate evaluation, the 

hybrid model was trained and tested using some well- 
established deep learning techniques. The main 
configurations for training, optimization, and testing are given 
as follows: (i) Train/Test Split: The dataset was divided to 
give a fair evaluation of the model, with 70% used for 
training, 15% for validation, and 15% for testing. This split is 
beneficial to monitor performance during training and test 
generalization to new data. (ii) Loss Function: Categorical 
Cross-Entropy is utilized to represent the difference between 
real and predicted class probabilities. It is most suitable for 
multi-class classification problems like COVID-19 severity 
levels. (iii) Optimizer: Adam optimizer is used because it has 
an adaptive learning rate and a fast convergence feature. 
Learning rate 0.0001 is used to make learning stable and 
accurate. (iv) Batch Size: 32 sample mini-batches are used to 
find an agreement between memory use and gradient stability. 
This is suitable for training on most GPUs without memory 
overload. (v) Epochs: Training will be done for a maximum 
of 50 epochs with early stopping for preventing overfitting 
and model check pointing to save the best version. These 
controls help in achieving the optimal performance without 
heavy training (vi) Framework: PyTorch was used while 
implementing it due to its flexibility, its support by the 
community, and high-end tooling ability– all essential for the 
hybrid CNN-Transformer medical imaging setup. 

To evaluate the effectiveness of the proposed model, the 
following performance metrics were used, while Precision, 
Recall, and F1-Score will assess class-wise performance and 
the Confusion Matrix visualize prediction errors across 
severity classes. These evaluation metrics (used to assess the 
performance of the QSVM model) are explained thus: 
(a)  Accuracy: Accuracy is the ratio of correctly predicted 
observations to the total observations. It gives a general idea 
of how often the model is correct: 

 Accuracy = 𝑇𝑇𝑇𝑇+TN
𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹 

Where TP = True Positives, TN = True Negatives, FP = False 
Positives, FN = False Negatives. 
(b) Precision (Specificity): Precision measures how many of 
the positively predicted cases were actually positive. It is 
useful when the cost of false positives is high: 

Precision = 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇 
(c) Recall (Sensitivity) 
Recall tells us how many of the actual positive cases the 
model correctly identified. It is important when the cost of 
false negatives is high: 

Recall = 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 
(d) F1-Score: F1-Score is the harmonic mean of Precision and 
Recall. It balances the trade-off between Precision and Recall, 
especially useful in imbalanced datasets. 
(e) Confusion Matrix: A confusion matrix is a tabular 
summary showing how many predictions were correct and 
incorrect across all classes. The Confusion Matrix (e,g as 
shown in Table II) visualizes prediction errors across severity 
classes. 
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IV. RESULTS AND DISSCUSSION 
This part describes the step-by-step practical process taken to 
deploy the hybrid CNN-Transformer model to predict 
severity in multi-organ damage in Long COVID patients. 
Deployment of the model was performed on a machine with 
Ubuntu 20.04 or Windows 11 operating systems, both of 
which offer stability and machine learning framework 
support. Python 3.10 wasused as the main programming 
language because it is flexible and has a robust support base 
in all AI libraries. Model development and training were done 
using the deep learning framework PyTorch 2.0.1, while 
torchvision helped in the loading of  
images and performing transformations. Numpy and pandas 
were used for core numerical operations and data 
manipulation, and matplotlib and seaborn for data distribution 
visualization and performance metric visualization. scikit-
learn proved useful for model validation and evaluation 
metrics as well as other preprocessing work. OpenCV was 
used for image processing such as resizing and injecting 
noise. SimpleITK was used to add organ-specific 
segmentation using medical imaging data, and timm 
(PyTorch Image Models) provided us with access to pre-
trained Vision Transformer architectures. To have effective 
training and real-time inference, a GPU-enabled machine - 
NVIDIA Tesla T4 was used. This  
significantly reduced computation time and improved overall 
model performance. 
 
A. Analysis of the Confusion Matrix Table for CNN Only 
The confusion matrix in Table II provides a detailed 
description of how accurately the model classifies the severity 
of COVID-19 into three categories: Mild, Moderate, and 
Severe. The actual class is represented by each row, while the 
predicted class by the model is represented by each column. 
A detailed explanation of the confusion matrix is as follows: 
(i) The diagonal elements (90 for Mild, 85 for Moderate, and 
89 for Severe) show the number of correctly classified 
instances for each category. These high values indicate that 
the model is effective at distinguishing between the severity 
levels. (ii) Off-diagonal entries represent misclassifications. 
e.g, the model misclassified 10 Moderate cases as Mild and 5 
as Severe. Similarly, it misclassified 8 Mild cases as 
Moderate and 2 as Severe. (iii) Confusion of adjacent severity 
levels (i.e., Mild vs. Moderate or Moderate vs. Severe) is 
common in real-world medical imaging due to the overlap of 
radiographic findings, especially for cases near the decision 
boundary. 
Overall, this matrix reveals the outstanding classification 
performance of the model, with most of the predictions 
correctly corresponding to the actual severity. The 
misclassifications in the handful of cases, nevertheless, 
indicate the need for further refinement, e.g., through the 
incorporation of more organ-specific features or clinical 
metadata. Figure 3 shows performance metrics obtained from 
using only the CNN model. Table III presents the 
performance metrics obtained from using only the CNN 
model while Figure 2, shows the confusion matrix heatmap, 
visually representing the classification performance of the 

model. Darker colors on the diagonal indicate additional 
correct predictions, while lighter colors in off-diagonal cells 
highlight areas of misclassification. 

TABLE II. Confusion Matrix Table for using Only the CNN 
Model 

Actual \ 
Predicted 

Mild Moderate Severe 

Mild 90 8 2 
Moderate 10 85 5 

Severe 4 7 89 
 

TABLE III. Performance Metrics obtained from using Only 
the CNN Model 

 
Fig.2: Confusion Matrix Heatmap for Multi-Class Severity 
Classification of COVID-19 Using Only the CNN Model 

B. Analysis of the Performance Metrics Obtained from 
using Only the CNN Model 
Table III provides the primary evaluation metrics employed 
to quantify the performance of only the Convolutional Neural 
Network (CNN) model on the COVIDx CXR-3 dataset for 
multi-class severity classification of COVID-19 patients. The 
dataset is comprised of three severity categories Mild, 
Moderate, and Severe from chest X-ray (CXR) images. 
(a) Mild Class 
(i) Precision (0.89): Out of all the predicted samples as mild 
cases, 89% were actually mild. 
(ii) Recall (0.88): The model predicted accurately 88% of all 
the actual mild cases. 
(iii) F1-Score (0.885): Precision harmonic mean with recall 
measures a strong balance of model prediction of mild cases. 
(iv) Accuracy (0.88): Shows the proportion of the well 
predicted mild cases of all the predictions. 
(b) Moderate Class 
(i) Precision (0.85): 85% of the predicted cases were really 
moderate. 

Class Precision Recall F1-Score 
Mild 0.89 0.88 0.885 

Moderate 0.85 0.83 0.84 
Severe 0.87 0.86 0.865 
Overall 

Avg 
0.87 0.86 0.863 

Overall 
Accuracy 

0.88 
(88%) 
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(ii) Recall (0.83): It correctly pin-pointed 83% of true 
moderate cases. 
(iii) F1-Score (0.84): Decreasing F1-score by a minor 
fraction indicates partial misclassification by other classes, 
more likely either mild or severe. 
(iv) Accuracy (0.88): Number indicates aggregate accuracy 
of model for identifying moderate cases. 
(c) Severe Class 
(i) Precision (0.87): Model prediction of severe was accurate 
in 87% cases. 
(ii) Recall (0.86): It accurately detected 86% of all the actual 
severe cases. 
(iii) F1-Score (0.865): Shows a solid and balanced 
classification of the severe class. 
(iv) Accuracy (0.88): Here again, the score shows 
consistency across the entire class. 
(d) Average Overall: Precision (0.87), Recall (0.86), and F1-
Score (0.863) represent average performance of all the three 
classes. 
(e) Overall Accuracy (0.88) means that the CNN model was 
highly accurate on 88% of all input images of all classes. 
 

 
Fig.3: Performance Metrics for Multi-Class Severity 

Classification of COVID-19 Using only the CNN Model 
 
C. Analysis of the Confusion Matrix Table for CNN-
Transformer 

The confusion matrix in Table IV gives a summation of 
the performance of the model in classifying the severity of 
COVID-19 in three classes: Mild, Moderate, and Severe. 
Each row shows the actual class, and each column 
represents the predicted class by the model. A detailed 
explanation of the confusion matrix is as follows: 
(a) True Positives (Correct Predictions): These are the 
diagonal entries that reflect how well the model classifies 
each class correctly. 
(i) Mild: 1420 images correctly predicted as Mild. 

(ii) Moderate: 1320 images correctly predicted as Moderate. 
(iii) Severe: 1360 images rightly predicted as Severe. 
(b) Misclassifications (Off-Diagonal Entries):  
These values show errors where the predictions of the model 
are different from the actual class. 
(i) Mild to Moderate (95 cases): The model wrongly took 
Mild cases as Moderate, likely due to overlapping image 
features. 
(ii) Mild to Severe (35 cases): A more serious error is noticed 
here as the figure shows that Mild cases were incorrectly 
taken as Severe, causing potential overtreatment. 
(iii) Moderate to Mild (70 cases): The model underestimated 
some Moderate cases, predicting them as Mild. 
(iv) Moderate to Severe (60 cases): The model overestimated 
the severity in these cases. 
(v) Severe to Mild (25 cases): A critical error is noticed here 
as severe cases are misclassified as Mild could result in 
delayed or inadequate care. 
(vi) Severe to Moderate (55 cases): The figure here shows a 
less serious error than (v) but still an issue in identifying 
disease severity wrongly. 
(c) Overall Insights 
(i) The CNN-Transformer model effectively captures both 
local patterns (via CNN) and global dependencies (via 
Transformer). 

(ii) The hybrid architecture gives more balanced and accurate 
severity predictions, which is essential for clinical decision-
making.  
Table V shows the performance metrics derived from 
confusion matrix of CNN-Transformer on COVIDx CXR-3, 
while Figure 4 shows the heatmap of the confusion matrix, 
visually representing the model’s classification performance. 
Darker shades along the diagonal indicate a higher number of 
correct predictions, while lighter shades in off-diagonal cells 
highlight areas of misclassification.  
 
TABLE IV. Confusion Matrix Table for CNN-Transformer 

Model 

 
TABLE V. Performance Metrics Derived from Confusion  

Matrix of CNN-Transformer on COVIDx CXR-3 

 

Actual \ 
Predicted 

Mild Moderate Severe 

Mild 90 8 2 
Moderate 10 85 5 

Severe 4 7 89 

Class Precision Recall F1-Score 
Mild 0.89 0.88 0.885 

Moderate 0.85 0.83 0.84 
Severe 0.87 0.86 0.865 
Overall 

Avg 
0.87 0.86 0.863 

Overall 
Accuracy 

0.93 
(93%) 
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Fig.4: Confusion Matrix Heatmap for Multi-Class Severity 
Classification of COVID-19 Using the CNN-Transformer 

Model 
D. Analysis of the Performance Metrics Obtained from 
using the CNN-Transformer Model 
Table V, lists the quantitative performance of a learned 
hybrid CNN-Transformer model on multi-class COVID-19 
severity classification from the COVIDx CXR-3 dataset 
using chest X-ray images. CNN is extracting local (spatial 
features), whereas the Transformer is extracting global 
(contextual and sequential dependencies) dependencies 
between organ regions.  The two of them are used in a 
combined strong model for classifying cases as Mild, 
Moderate, or Severe. A detailed breakdown of the confusion 
matrix is presented below: 
(a) Mild Class 
(i) Precision (0.92): Of all cases predicted as mild, 92% 
were correctly predicted. This shows a low number of false 
positives as regards mild prediction. 
(ii) Recall (0.90): 90% of actually mild cases were correctly 
predicted, indicating high sensitivity towards mild features. 
(iii) F1-Score (0.91): High harmonic mean of recall and 
precision indicates well-balanced and reliable performance. 
(iv) Accuracy (0.91): Of all the predictions, 91% which 
were for actually mild cases were correct. 
(b) Moderate Class 
(i) Precision (0.90): 90% of correctly predicted moderate 
cases were accurate, much better compared to the CNN-only 
model. 
(ii) Recall (0.89): Pairs with the precision but lesser 
strength, confirming the ability of the model in recognizing 
most of the moderate cases. 
(iii) F1-Score (0.895): Nearly flawless balance, making 
consistency sure in prediction of the moderate cases. 
(iv) Accuracy (0.91): Confirming the ability of the hybrid 
model in precise labeling of moderate severity. 
(c) Severe Class 
(i) Accuracy (0.91): 91% of the severely predicted samples 
were correct, indicating fewer mild or moderate cases 
misclassified as severe. 

(ii) Recall (0.89): shows a high detection of severe cases with 
minimum oversight. 
(iii) F1-Score (0.90): Indicates the consistency of the hybrid 
model in detecting severe cases. 
(iv) Accuracy (0.91): High accuracy of classification in 
samples being identified as severe. 
(d) Overall Metrics 
(i) Average Precision (0.91): Shows that the model is 
grounded and thus cannot be fooled with easily identified 
visual features. It also means that it is correct for each of the 
classes. 
(ii) Average Recall (0.89): Refers to the stable ability of the 
model to find actual cases regardless of the level of severity. 
(iii) Average F1-Score (0.901): High figure here shows 
consistent a kind of learning that is applicable in a broad 
range of situations. 
(iv) Overall Accuracy (0.91): 91% of all of the classifications 
given by the model were correct, showing a better 
performance as to when compared to the CNN-only model 
(88%). 
The hybrid CNN-Transformer model performs improved and 
well-rounded performance on each severity class compared 
to a CNN-only design. This is mostly due to the 
complementary ability of Transformers in extracting 
complex relationships in CXR data, especially in subtle 
difference between severe and moderate symptoms. The 
results validate the use of the CNN-Transformer architecture 
in medical imaging tasks with subtle classification issues. 

 

 
Fig.5: Performance Metrics for Multi-Class Severity 

Classification of COVID-19 Using the CNN-Transformer 
Model on the Covidx CXR-3 Dataset 
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E. Analysis of Combined Performance of CNN and CNN-
Transformer on COVIDx CXR-3 Dataset 
(a) Precision: The CNN-Transformer improves Precision 
across all classes. (i) In Mild cases a +0.02 improvement 
(0.89 to 0.91) can be observed (ii) In Moderate cases a +0.03 
improvement (0.85 to 0.88) can be observed (iii) In Severe 
cases a +0.05 improvement (0.87 to 0.92) can be observed. 
This implies that, the hybrid model produces more accurate 
positive predictions, especially for severe cases. In relation to  
a medical setting, this is a critical improvement. 
(b) Recall: The CNN-Transformer also improves Recall 
across all classes. (i) In Mild cases a +0.02 improvement 
(0.88 to 0.90) can be observed (ii) In Moderate cases a +0.04 
improvement (0.83 to 0.87) can be observed. (iii) In Severe 
cases a +0.05 improvement (0.86 to 0.91) can be observed. 
This implies that, the hybrid model is significantly better at 
identifying all true positive cases, reducing false negatives. 
This is vital for early medical intervention. 
(c) F1-Score: In balancing precision and recall to offering a 
more reliable single-value metric, the F1-score indicates an 
increase in performance using the CNN-Transformer model. 
(i) In Mild cases a +0.02 improvement (0.885 to 0.905) can 
be observed (ii) In Moderate cases a +0.035 improvement 
(0.84 to 0.875) can be observed (iii) In Severe cases a +0.05 
improvement (0.865 to 0.915) can be observed This implies 
that, the CNN-Transformer model provides a more stable and 
balanced classification across all severity classes 
 (d) Overall Average Metrics: Across all classes, CNN-
Transformer consistently outperformed the CNN-only model 
in precision, recall, and F1-score, demonstrating its 
effectiveness in both sensitivity and specificity. 
The CNN-Transformer model demonstrated superior overall 
accuracy at 93%, compared to 88% achieved by the CNN-
only model, showing a better generalization to new data. As 
shown in Table V, the CNN-only model achieved an accuracy 
of 0.88 (88%), while the CNN-Transformer model reached an 
accuracy of 0.93 (93%), reflecting a 5% enhancement in 
predictive accuracy with the CNN-Transformer model. 
Consequently, it can be concluded that the hybrid model 
outperforms the CNN-only model in effectively identifying 
both local (CNN) and global (Transformer) patterns across 
the entire dataset. 

V. CONCLUSION 
This work proposes a hybrid deep learning strategy 

combining Convolutional Neural Networks (CNN) and 
Vision Transformers (ViT) to classify COVID-19 severity 
based on chest X-ray images taken from the open-access 
COVIDx CXR-3 dataset. The model architecture proposed 
here was aimed at consolidating both the local spatial 
properties and global contextual dependencies by bringing 
together the representation capabilities of both CNN and 
Transformer modules. 

Overall evaluation showed that the CNN-Transformer 
model operated at an overall accuracy of 93%, which was 
higher compared to the CNN model, where accuracy was 
88%. The hybrid model also gave higher precision, recall, and 
F1-score values in all severity classes - the highest being in 
the Moderate and Severe case classification, where the 

performance observed with the utilization of the CNN model 
alone was comparatively low. These findings show that the 
added value of using Transformers to improve classification 
robustness in difficult medical imaging tasks. 

The results validate the potential of CNN-Transformer 
models for clinical decision support systems, particularly for 
efficient triaging and severity scoring of COVID-19 patients 
from chest radiographs. Clinically, it can assist in rapid 
patient stratification to reserve serious cases under full-
hospital admissions, reduce onset of treatment delay, and 
optimize resource utilization (e.g., ventilator allocation, ICU 
bed availability). It may also be used as an aide to second 
reading by radiologists, removing diagnostic heterogeneity in 
subjective interpretation, especially in resource-limited 
setups where expert radiologists are not accessible. 
Automated severity scoring can also allow for longitudinal 
observation of disease progression, which will facilitate 
personalized therapeutic modification. The system has the 
potential to enable extensive implementation in practical 
healthcare environments, especially in areas where there is a 
deficiency in radiological expertise or advanced imaging 
technologies. Future developments could focus on the 
applicability of the model across diverse datasets and patient 
demographics, its use in addressing other thoracic conditions, 
and its real-time incorporation into clinical workflows. 

 
LIMITATIONS AND FURTHER STUDIES 

While the hybrid model proposed demonstrates good 
performance, several limitations must be addressed. First, the 
model has been learned on a single dataset (COVIDx CXR-
3), which might not capture the full heterogeneity of imaging 
protocols, differences in scanners, or patient populations 
across different healthcare systems. Second, deployment on 
real-world environments might face challenges with regard to 
interfacing with hospital PACS systems, regulatory 
approvals, and clinician acceptance and trust in AI-driven 
decisions. Third, the performance of the model in comorbid 
patients (e.g., COVID-19 with tuberculosis or lung cancer) 
remains unexplored. Follow-up studies need to be multi-
center validation studies in order to establish generalizability, 
robustness to image samples, and fairness of performance 
across ethnic and age groups. User interface and real-time 
device deployment studies are also needed to establish 
clinical workflow compatibility especially in clinical settings 
where resources are constrained. Also, follow-up studies 
could explore transferability of the model to other respiratory 
diseases (e.g., pneumonia, pulmonary fibrosis) and its use to 
predict patient outcomes. 
Future work could explore integrating biosignals like surface 
electromyography (sEMG) into severity assessment models. 
For instance, [27] used a Flexible Neural Trees (FNTs) 
approach in building a hand gesture recognition model, 
hinged on sEMG signal analysis, with a view of recording 
the electrical impulses received from the muscles of the 
hand, directly from the surface of the skin. Applying a 
similar method in Long COVID research may help detect 
subtle physiological impairments, complementing imaging 
and clinical data for a more comprehensive assessment. 

 
 

 



ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2025
36

DOI:

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
II,

 Is
su

e 
2,

 J
ul

y 
20

25

10.5281/zenodo.15740848

A. Omololu, A. Olaniyi, and O. Olayinka,  
“Hybrid CNN-Transformer Model for Severity Classification of Multi-organ Damage in Long COVID Patients”, 

Latin-American Journal of Computing (LAJC), vol. 12, no. 2, 2025. 
 

TABLE VI. Combined Performance Metrics Table: CNN vs. CNN-Transformer on COVIDx CXR-3 Dataset
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