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Resumen— El diagnóstico temprano del melanoma es crucial 
para mejorar la tasa de supervivencia, lo que ha impulsado el 
desarrollo de modelos de aprendizaje profundo para su detección 
automatizada. Esta investigación tiene como objetivo evaluar el 
rendimiento de una red neuronal convolucional (CNN) en la 
clasificación de imágenes dermoscópicas de lesiones en la piel, 
comparando su precisión con la de expertos en dermatología. Para 
lograr esto, se entrenó una CNN utilizando un conjunto de imágenes 
que fueron preprocesadas para mejorar la capacidad de 
generalización del modelo. La evaluación se llevó a cabo mediante 
el uso de métricas de calidad como exactitud, precisión, sensibilidad 
y F1-score. Además, se utilizó la curva ROC y la matriz de 
confusión para analizar el equilibrio entre los falsos positivos y 
falsos negativos en la clasificación. Los resultados mostraron que la 
CNN superó el rendimiento de los dermatólogos en términos de 
especificidad y sensibilidad, con un área bajo la curva (AUC) 
cercana a 1, lo que indica una gran capacidad discriminativa. La 
matriz de confusión reveló que la clasificación fue correcta en la 
mayoría de los casos, minimizando los errores de tipo I y II. En 
conclusión, la implementación de redes neuronales en el diagnóstico 
de melanoma representa una herramienta prometedora para la 
asistencia médica. No obstante, se identificaron oportunidades de 
mejora, como el ajuste de umbrales de decisión y la optimización 
del preprocesamiento de imágenes, lo que permitirá incrementar la 
precisión del modelo en aplicaciones clínicas futuras. 

Palabras Clave— Redes Neuronales Convolucionales (CNN), 
Melanoma, Aprendizaje profundo, Preprocesamiento de 
Imágenes, Diagnóstico Automatizad. 

Abstract— Early diagnosis of melanoma is crucial for 
improving survival rates, which has driven the development of deep 
learning models for its automated detection. This research aims to 
evaluate the performance of a convolutional neural network (CNN) 
in classifying dermoscopic images of skin lesions, comparing its 
accuracy with that of dermatology experts. To achieve this, a CNN 
was trained using a set of images that were preprocessed to improve 
the generalization ability of the model. The evaluation was carried 
out by means of quality metrics such as accuracy, precision, 
sensitivity, and F1-score. In addition, the ROC curve and confusion 
matrix were used to analyze the balance between false positives and 
false negatives in the classification. The results showed that the 
CNN outperformed dermatologists in terms of specificity and 
sensitivity, with an area under the curve (AUC) close to 1, indicating 
high discriminatory power. The confusion matrix revealed that the 
classification was correct in most cases, minimizing type I and type 
II errors. In conclusion, the implementation of neural networks in 

melanoma diagnosis represents a promising tool for medical care. 
However, opportunities for improvement were identified, such as 
adjusting decision thresholds and optimizing image preprocessing, 
which will increase the accuracy of the model in future clinical 
applications. 

Keywords—Convolutional Neural Networks; Melanoma; Deep 
Learning; Preprocessing images; Automatic diagnostic 

I. INTRODUCCIÓN 
El melanoma representa una de las variantes más 

peligrosas del cáncer cutáneo, identificarlo en sus etapas 
iniciales resulta fundamental para mejorar las probabilidades 
de supervivencia de quienes lo padecen. Según la Sociedad 
Americana Contra el Cáncer (ACS), el cáncer de piel destaca 
como la forma de cáncer más común entre todas. Aunque el 
melanoma constituye apenas el 1% de los diagnósticos de 
cáncer cutáneo, es el principal causante de fallecimientos 
relacionados con esta afección. Hasta el 2025, se estima que 
habrá alrededor de 104,960 nuevos casos de melanoma en los 
Estados Unidos (aproximadamente 60,550 en hombres y 
44,410 en mujeres). Se prevé que cerca de 8,430 personas 
(5,470 hombres y 2,960 mujeres) fallecerán debido a este tipo 
de cáncer [1] 

Actualmente, los dermatólogos utilizan métodos 
tradicionales como la inspección visual y la dermatoscopia 
para la evaluación de lesiones cutáneas. Sin embargo, estos 
enfoques están fuertemente condicionados por el nivel de 
experiencia del profesional y pueden verse afectados por 
factores subjetivos. Además, en regiones con acceso limitado 
a dermatólogos capacitados, la detección temprana se ve 
comprometida, lo que aumenta el riesgo de diagnósticos 
tardíos. 

Por ello, en los últimos años, ha crecido el uso de diversas 
técnicas de análisis automatizado de imágenes por ordenador 
para mejorar la precisión y la reproducibilidad del diagnóstico 
del melanoma en comparación con los resultados clínicos 
obtenidos de imágenes dermatoscópicas. La inteligencia 
artificial (IA) se está posicionando como una tecnología con 
un enorme potencial en el campo de la medicina, 
especialmente cuando se trata de interpretar imágenes 
clínicas. Las CNN han revolucionado la detección de 
enfermedades gracias a su habilidad para extraer 
características clave y realizar clasificaciones con una 

https://orcid.org/0009-0004-6190-0990
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precisión impresionante. Estas arquitecturas han demostrado 
un rendimiento que, en muchas ocasiones, es comparable e 
incluso superior al de los especialistas humanos en diversas 
tareas de diagnóstico por imágenes. 

Un buen ejemplo de esto es la investigación de Kothapalli 
et al. [2] que describe las CNN como estructuras propias del 
aprendizaje profundo capaz de reconocer y extraer 
características automáticamente a partir de grandes volúmenes 
de datos de imágenes complejas. Esta investigación ha 
demostrado que las CNN son muy eficaces para identificar y 
clasificar lesiones cutáneas, incluido el melanoma. Al entrenar 
las CNN con extensos conjuntos de datos de imágenes de 
lesiones cutáneas, se pueden enseñar a distinguir las 
características que separan las lesiones benignas de las 
malignas. 

Del mismo modo, Yalcinkaya & Erbas [3] optan por una 
arquitectura diferente. En este artículo, se utiliza una 
arquitectura de detección automática de melanomas que 
combina un modelo de aprendizaje profundo CNN con un 
enfoque basado en la lógica difusa. Este enfoque genera un 
mapa de correlación difusa de los píxeles de la imagen que se 
introduce en la red CNN. Al probarse en un extenso conjunto 
de datos ISIC, el modelo demostró una alta precisión, 
sensibilidad y especificidad en la clasificación en 
comparación con clasificadores que utilizaban mapas de 
correlación no difusos. 

Este estudio presenta un enfoque fundamentado en CNN 
para la detección de melanoma, utilizando imágenes 
dermatológicas preprocesadas y optimización de 
hiperparámetros para mejorar la precisión del modelo. Se 
presenta un análisis detallado del conjunto de datos utilizado, 
el procesamiento de los datos, la arquitectura de la red 
implementada y la evaluación del desempeño del modelo 
frente a metodologías previamente desarrolladas. 

II. METODOLOGÍA 
Para el desarrollo del presente estudio, la información 

empleada fue extraída de la plataforma Kaggle, en concreto 
del conjunto de datos denominado “Melanoma”, el cual está 
disponible de forma pública en esta comunidad en línea 
dirigida a científicos de datos [4]. Cabe destacar que, para este 
estudio, se utilizó una muestra representativa del repositorio e 
imágenes, seleccionada de manera aleatoria con el fin de 
garantizar la diversidad y representatividad de los datos en 
relación con el tema de estudio. La selección de esta porción 
del conjunto de datos se fundamentó en criterios de relevancia 
y en la disponibilidad de información adecuada para el 
entrenamiento y validación del modelo propuesto. En la Fig. 
1, se puede observar una muestra aleatoria de las imágenes 
pertenecientes a las clases dentro del conjunto de datos. 

 
Fig. 1. Scarlat A. (2020) Melanoma Dataset [Conjunto de datos]. 

Kaggle. https://www.kaggle.com/datasets/drscarlat/melanoma 

Este conjunto de datos está estructurado en tres carpetas 
principales: entrenamiento (train_sep), validación 
(valid) y prueba (test). Cada una de estas carpetas se 
subdivide a su vez en dos subcarpetas, las cuales corresponden 
a las dos clases de diagnóstico: Melanoma 
(Maligno) y NotMelanoma (Benigno). Esta organización se 
encarga de clasificar las imágenes de manera clara según su 
función en el ciclo de desarrollo del modelo. Así, se asegura 
de que los datos de entrenamiento, validación y prueba estén 
bien categorizados y listos para ser utilizados.  

Además, esta estructura jerárquica facilita una gestión 
eficiente de los datos. Cada subcarpeta alberga únicamente 
imágenes de una clase específica, lo que hace que la carga y 
el preprocesamiento de las imágenes sean mucho más 
sencillos durante la implementación del modelo. La división 
en tres conjuntos independientes (entrenamiento, validación y 
prueba) es fundamental para garantizar que el modelo pueda 
ser entrenado, ajustado y evaluado de manera rigurosa, 
minimizando el riesgo de sobreajuste y asegurando una 
generalización adecuada a nuevos datos. A continuación, en 
la TABLA I se resume la distribución de imágenes en cada 
conjunto: 

TABLA I. CONJUNTO DE DATOS MELANOMA 

Directorio Melanoma NotMelanoma Total 
Train_sep 1008 1008 2016 

Test 336 336 672 
Valid 336 336 672 
Total 1680 1680 3360 

 

 En resumen, el conjunto de datos completo consta de 3360 
imágenes, con una distribución equilibrada entre las 
clases Melanoma y NotMelanoma en cada uno de los 
conjuntos (entrenamiento, validación y prueba), lo que 
garantiza un desarrollo y evaluación robustos del modelo. La 
Fig. 2 permite una apreciación más detallada de esta 
distribución. 
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Fig. 2. Distribución del conjunto de datos Melanoma 

Tras examinar el dataset, se procedió a realizar el 
procesamiento de datos. El procesamiento de datos representa 
un paso clave en la adecuación de las imágenes para el 
entrenamiento de algoritmos clasificatorios. Se aplicaron 
diversas técnicas de preprocesamiento con la finalidad de 
optimizar la nitidez de las imágenes y optimizar la extracción 
de características relevantes. 

Uno de los principales desafíos en el análisis de imágenes 
dermatológicas es la presencia de vellos, los cuales pueden 
ocultar detalles clave de la piel. Para abordar este problema, 
se utilizó el algoritmo DullRazor, una herramienta creada 
específicamente para eliminar el vello en imágenes médicas. 
Este algoritmo se encarga de identificar y eliminar las áreas 
con vello, reemplazándolas con información interpolada de 
los píxeles vecinos. Este proceso no solo mejora la claridad de 
las imágenes, sino que también facilita la identificación y 
clasificación de características relacionadas con el melanoma, 
lo que contribuye a una mayor precisión en el diagnóstico 
asistido por computadora. [5] 

Una vez implementado el algoritmo DullRazor, se puede 
observar una diferencia notable entre la imagen original y la 
imagen procesada por el algoritmo. En la sección izquierda 
de la Fig. 3, se observa una lesión de la piel recubierta con 
vellosidad, lo cual puede afectar el desempeño del algoritmo 
al momento del entrenamiento. Sin embargo, en la sección 
derecha de la Fig. 3, se puede notar que la misma lesión ya 
no contiene vellosidad y se puede apreciar de una mejor 
manera la lesión en la piel.  

 

 

Fig. 3. Imagen procesada a partir de Scarlat A. (2020) Melanoma 
Dataset [Conjunto de datos]. Kaggle. 

https://www.kaggle.com/datasets/drscarlat/melanoma 

Después de aplicar el algoritmo DullRazor, las imágenes 
procesadas pasaron por una serie de transformaciones para 
mejorar su calidad y hacer más fácil su visualización y 
análisis. Primero, se redimensionaron a un tamaño uniforme 
de 224x224 píxeles, que es un formato ideal para las 

arquitecturas de redes neuronales convolucionales 
preentrenadas, ya que requieren dimensiones específicas de 
entrada. Este redimensionamiento garantiza que las imágenes 
mantengan una relación de aspecto adecuada y que no se 
pierdan las características espaciales importantes durante el 
proceso.  

Luego, se utilizó la técnica de mejora de nitidez llamada 
"Unsharp Masking", que consiste en crear una versión 
ligeramente desenfocada de la imagen original usando un 
filtro Gaussiano [6]. Esta versión desenfocada se mezcla con 
la imagen original para resaltar los bordes y detalles, lo que 
mejora la claridad y el enfoque de las imágenes. Este paso es 
crucial para destacar las características importantes que el 
modelo necesita identificar durante el entrenamiento y la 
clasificación. 

 
Fig. 4. Lesión con aplicación de técnica Unsharp Masking a partir 

de: Scarlat A. (2020) Melanoma Dataset [Conjunto de datos]. 
Kaggle. https://www.kaggle.com/datasets/drscarlat/melanoma 

Por último, se realizó una normalización de las imágenes, 
transformando los valores de píxeles del rango [0, 255] al 
rango [0, 1]. Esta normalización es una práctica común en 
redes neuronales, ya que mejora la consistencia en el 
procesamiento de datos, mejora la eficiencia del modelo y 
refuerza su estabilidad tanto en la fase de entrenamiento como 
en la de evaluación. 

A continuación, se detalla el proceso de construcción del 
algoritmo de red neuronal convolucional (CNN) utilizado en 
este estudio. Para ello, el modelo fue construido mediante la 
clase Sequential de Keras, proporcionando funciones de 
entrenamiento para el modelo [7]. A diferencia de redes 
neuronales preentrenadas que están optimizadas para 
conjuntos de datos específicos y suelen ser grandes (lo que 
aumenta el número de parámetros y el consumo de memoria), 
se optó por desarrollar una CNN personalizada. Esta decisión 
facilitó la adaptación de la arquitectura a las necesidades del 
estudio, como el tamaño de las imágenes (224x224x3, donde 
3 corresponde a los canales de color) y el tipo de 
características que se buscaba capturar. 

La CNN implementada consta de varias capas 
convolucionales que cuentan con 8, 16 y 32 filtros, los cuales 
son clave para la extracción de características. [8]. Se incluyó 
una capa de normalización por lotes (Batch Normalization) 
con el objetivo de regular las activaciones internas del modelo 
y agilizar el proceso de entrenamiento [9]. Además, se 
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complementó la función de activación ReLU (Rectified 
Linear Unit) con el propósito de incorporar no linealidad al 
modelo, facilitando así el aprendizaje de patrones complejos 
en los datos [10]. Para reducir la dimensionalidad espacial de 
las salidas, se aplicó Max Pooling con un tamaño de 2x2 
y strides de 2, una técnica de muestreo descendente que 
simplifica los cálculos y reduce el tamaño de los parámetros 
[11].  

Luego de esto, la salida es enviada a una capa Flatten, 
utilizada para aplanar la salida de la capa anterior sin afectar 
al lote [12]. La red también incluye una capa Dense 
completamente conectada con 15 neuronas en una capa oculta, 
que combina las características aprendidas en las capas 
anteriores [13]. En la capa de salida, se implementaron 2 
neuronas (una por cada clase en la clasificación binaria) junto 
con la función de activación Softmax, encargada de generar 
una distribución probabilística que facilita la asignación de 
clases, facilitando la clasificación binaria [14]. Toda esta 
arquitectura se presenta en la Fig. 5. Por último, se añadió el 
optimizador Adam para minimizar el error durante el 
entrenamiento [15]. Este optimizador según Kingma et al. Se 
trata de un algoritmo de optimización que emplea gradientes 
de primer orden para funciones objetivo de naturaleza 
estocástica, utilizando estimaciones adaptativas de momentos 
de bajo orden para ajustar dinámicamente el proceso de 
aprendizaje [16]. 

 
Fig. 5. Arquitectura de Red Neuronal 

Para asegurar un óptimo entrenamiento, se configuraron 
dos callbacks: EarlyStopping, el cual detiene el entrenamiento 
cuando una métrica supervisada haya dejado de mejorar [17] 
y ReduceLROnPlateau, que disminuye la tasa de aprendizaje 
cuando una métrica haya dejado de mejorar [18]. Estos tienen 
como propósito mejorar el rendimiento de la red neuronal. 

En la TABLA II, se presentan los parámetros utilizados en 
el callback EarlyStopping. Este ayuda a prevenir el 
sobreajuste y ahorra tiempos y recursos al detener el 
entrenamiento cuando el rendimiento del algoritmo deja de 
mejorar.  

 
TABLA II. ARGUMENTOS DE EARLYSTOPPING 

Argumento Valor Función 
Monitor val_loss Métrica para 

monitorear 
Patience 5 Épocas sin 

progreso. 
Restore_best_weights True Restablece los 

pesos del modelo  
 

En la TABLA III, se muestra los parámetros utilizados por 
ReduceLROnPlateau. Este ayuda a ajustar de manera 
dinámica la tasa de aprendizaje permitiendo que el modelo 
converja de mejor manera cuando el progreso sea detenido.  

TABLA III. ARGUMENTOS DE REDUCELRONPLATEAU 

Argumento Valor Función 
Monitor val_loss Métrica para 

monitorear 
Factor  0.1 Disminuye la 

velocidad de 
aprendizaje 
(nueva_lr = lr * 
factor) 

Patience 2 Número de épocas 
sin mejoras  

Min_lr 0.0001 Tasa de aprendizaje 
mínima 

 

Asimismo, en la Tabla IV se exhiben los hiperparámetros 
manejados para entrenar la red neuronal, incluyendo detalles 
sobre las configuraciones específicas empleadas en el proceso 
de aprendizaje, tales como la tasa de aprendizaje, el número 
de épocas, el tamaño del lote y otros parámetros relevantes que 
influenciaron el desempeño del modelo. 

TABLA IV. HIPERPARÁMETROS DE LA RED NEURONAL 

Parámetros Valores 
Tamaño de la muestra 2016 (1008 malignas y 1008 

benignas) 
Épocas  40 
Épocas recorridas 21 
Tasa de aprendizaje  0.01 
Callbacks EarlyStopping, 

ReduceLROnPlateau 
Tamaño de lote 24 

 

El proceso de entrenamiento se realizó en la plataforma 
Google Colab Pro, aprovechando sus capacidades avanzadas 
en términos de recursos computacionales. Esta plataforma 
proporciona acceso a aceleradores de hardware, como las 
unidades de procesamiento tensorial (TPU). Se trata de 
circuitos integrados personalizados, diseñados especialmente 
para optimizar y acelerar el proceso de entrenamiento de 
modelos de aprendizaje profundo. [19].  

Para el desarrollo del proyecto, se optó por utilizar Python 
como lenguaje de programación, ya que cuenta con una gran 
cantidad de bibliotecas y herramientas enfocadas en Deep 
Learning. Python destaca por su sintaxis intuitiva y su 
capacidad para implementar algoritmos de aprendizaje 
profundo de manera eficiente. En particular, se utilizaron las 
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bibliotecas TensorFlow y Keras para la construcción, 
entrenamiento y evaluación del modelo. 

III. RESULTADOS 
Esta sección expone los resultados derivados del proceso 

de entrenamiento y validación de la CNN. Para medir el 
desempeño del modelo, se utilizaron métricas de calidad 
ampliamente empleadas en el área del aprendizaje profundo y 
la detección de enfermedades, como la exactitud, precisión, 
sensibilidad y el puntaje F1. 

Se llevó a cabo un análisis de los resultados mediante la 
curva ROC (Característica Operativa del Receptor) y su área 
bajo la curva (AUC-ROC). Esto facilita la evaluación del 
rendimiento del modelo en la diferenciación entre imágenes 
de melanomas malignos y benignos. Finalmente, se muestra 
la matriz de confusión, la cual nos da una perspectiva detallada 
sobre los aciertos y errores del modelo, lo que facilita la 
interpretación de su rendimiento en cuanto a clasificación. 

Como se mencionó previamente, se utilizó la curva ROC 
para evaluar el desempeño del modelo de red neuronal. El 
resultado fue un impresionante 0.9955 en el valor AUC-ROC, 
lo que indica una predicción muy precisa. Esta colección de 
datos de prueba sugiere que el modelo tiene un rendimiento 
superior en la tarea de clasificación binaria. Un valor cercano 
a 1 significa que el modelo distingue eficazmente entre las 
clases positivas y negativas, lo cual muestra una alta 
sensibilidad y una baja tasa de falsos positivos. En la práctica, 
un AUC-ROC de 0.99 significa que el modelo tiene un 99% 
de probabilidad de clasificar correctamente un ejemplo 
positivo frente a uno negativo al azar; es decir, identifica con 
claridad de lesiones que pertenecen al melanoma y de lesiones 
que no pertenecen al melanoma. Por lo tanto, la Fig. 6 muestra 
el área bajo la curva ROC donde ilustra de forma gráfica el 
rendimiento del modelo en la predicción. 

 
Fig. 6. Curva ROC 

En la Fig. 7, se muestra la matriz de confusión, un 
instrumento primordial para valorar la calidad de la 
clasificación. Esta permite observar la cantidad de aciertos y 
errores cometidos por el modelo, distinguiendo entre los 
aciertos y los errores cometidos al momento de la 
clasificación. 

En particular, la matriz de confusión presenta la 
distribución de los verdaderos positivos (VP) y verdaderos 
negativos (VN); es decir, los casos donde el modelo identificó 

correctamente las lesiones malignas y benignas, 
respectivamente. Asimismo, permite identificar los errores de 
tipo I (falsos positivos, FP), que ocurren cuando una lesión 
benigna es clasificada erróneamente como maligna, y los 
errores de tipo II (falsos negativos, FN), en los que una lesión 
maligna es incorrectamente clasificada como benigna. 

El análisis de esta matriz resulta clave para evaluar el 
impacto de los errores en un contexto clínico, dado que un 
falso negativo podría retrasar el diagnóstico de un melanoma, 
mientras que un falso positivo podría generar alarmas 
innecesarias y procedimientos médicos adicionales. 

 
Fig. 7. Matriz de confusión 

En la matriz de confusión (Fig. 7), el cuadrante superior 
izquierdo representa la cantidad de verdaderos positivos (VP); 
en otras palabras, aquellos casos en los que el modelo clasificó 
correctamente una lesión como melanoma, sumando un total 
de 333 muestras. De manera similar, el cuadrante inferior 
derecho refleja los verdaderos negativos (VN), indicando que 
326 casos fueron identificados correctamente como lesiones 
benignas. Esta distribución evidencia que los valores más altos 
se concentran en la diagonal principal, lo que sugiere un alto 
nivel de precisión en la clasificación tanto de melanomas 
malignos como benignos. 

Por otro lado, los errores de tipo I, representados por los 
falsos positivos (FP), corresponden a aquellas muestras en las 
que el algoritmo clasificó incorrectamente una lesión benigna 
como melanoma. En este caso, se identificaron 3 instancias en 
las que el modelo generó una alerta errónea de la enfermedad. 
Asimismo, los errores de tipo II, que corresponden a los falsos 
negativos (FN), ocurrieron en 10 muestras en las que el 
modelo no logró detectar correctamente el melanoma, y 
clasificó erróneamente una lesión maligna como benigna. 
Estos errores tienen un impacto clínico significativo, ya que 
un falso negativo podría retrasar el diagnóstico y tratamiento 
oportuno del paciente. 

Por último, en base a las predicciones realizadas por el 
algoritmo y los valores resultantes de la matriz de confusión 
se obtuvieron diferentes métricas que evalúan el rendimiento 
de la arquitectura. En la Tabla V, se presentan los valores 
obtenidos al realizar las predicciones en función del conjunto 
de datos de testeo.  
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TABLA V. MÉTRICAS DE EVALUACIÓN 

Métrica  Valor  
Exactitud 98.07% 
Precisión 98.09% 
Sensibilidad 98.07% 
Puntaje F1  98.07% 
AUC 99.55% 

 

En general, los resultados obtenidos reflejan un 
desempeño sobresaliente del modelo. La elevada precisión, 
sensibilidad, puntuación F1 y una curva AUC cercana a 1 
indican que el modelo no solo es eficaz en la clasificación 
global, sino que también demuestra solidez en la 
identificación de casos positivos y en la reducción de errores. 
Este rendimiento sugiere que el modelo está bien ajustado y 
es altamente eficiente para la tarea específica de clasificación 
para la que fue entrenado. Sin embargo, a pesar de los 
resultados alentadores, todavía hay oportunidades de mejora 
en la capacidad predictiva y en la evaluación del modelo. 
Como parte de las limitaciones de este estudio, se aconseja 
implementar estrategias que optimicen su rendimiento, como 
ajustar los umbrales de decisión para lograr un mejor 
equilibrio entre las métricas, aplicar técnicas de data 
augmentation que enriquezcan la diversidad del conjunto de 
entrenamiento, y explorar otras metodologías que podrían 
ayudar a mejorar la capacidad del algoritmo, permitiendo así 
una clasificación más precisa y confiable. 

IV. DISCUSIÓN 
El presente estudio ha demostrado que el modelo apoyado 

en redes neuronales profundas es altamente eficiente para la 
clasificación de imágenes dermatológicas, lo que permite la 
detección precisa del melanoma. La evaluación del modelo a 
través de métricas de desempeño como exactitud, precisión, 
sensibilidad (recall), especificidad y F1-score, junto con un 
área bajo la curva ROC (AUC) indica que la arquitectura 
implementada logra una capacidad discriminativa robusta 
entre lesiones malignas y benignas. 

Los hallazgos obtenidos guardan coherencia con 
investigaciones anteriores que han utilizado enfoques de 
aprendizaje profundo para la identificación de melanoma, 
donde modelos basados en redes convolucionales han 
mostrado desempeños comparables a los de especialistas en 
dermatología. Por ejemplo, en la investigación de Maron et al 
[20], se desarrolló y entrenó una CNN empleando un total de 
11,444 imágenes dermoscópicas, y se evaluó posteriormente 
su desempeño en un grupo de prueba conformado por 6,390 
imágenes con verificación histopatológica. En este estudio, se 
evidenció que la CNN alcanzó una especificidad del 91.3% en 
la clasificación binaria de lesiones benignas y malignas, lo 
cual superó significativamente la especificidad alcanzada por 
los dermatólogos, correspondiente al 59.8%. Asimismo, la 
sensibilidad obtenida por la CNN fue similar a la de los 
especialistas, mientras que sus valores de especificidad y 
sensibilidad fueron superiores en las pruebas comparativas. 

En términos comparables, en la investigación realizada por 
Haenssle et al. [21], se aborda una comparación similar. Se 
utilizó una red neuronal convolucional (CNN) aprobada para 
el mercado europeo como dispositivo médico (Moleanalyzer 
Pro, FotoFinder Systems) para clasificar imágenes 

dermoscópicas de lesiones cutáneas. La precisión de la CNN 
se comparó con la de 96 dermatólogos, quienes evaluaron las 
mismas imágenes bajo condiciones menos artificiales, 
incluyendo imágenes clínicas y dermoscópicas, junto con 
información textual del caso. Los resultados mostraron que la 
CNN logró una sensibilidad del 95.0% y una especificidad del 
76.7%, con un área bajo la curva (AUC) de 0.918. En 
comparación, los 96 dermatólogos alcanzaron una 
sensibilidad del 89.0% y una especificidad del 80.7 en su 
primera evaluación (nivel I), que mejoró significativamente al 
94.1% con información adicional (nivel II), mientras que la 
especificidad se mantuvo prácticamente igual en 80.4%. 

Por lo tanto, en la presente investigación el análisis 
detallado de la matriz de confusión revela la presencia de 
errores de tipo I (falsos positivos), en los que el modelo 
clasifica erróneamente lesiones benignas como malignas, y 
errores de tipo II (falsos negativos), donde casos de melanoma 
no son correctamente identificados. La existencia de estos 
errores puede traer consigo implicaciones clínicas 
significativas. Un falso positivo podría llevar a realizar 
procedimientos invasivos innecesarios, mientras que un falso 
negativo podría retrasar un diagnóstico oportuno y, por lo 
tanto, el tratamiento del paciente. 

Uno de los principales desafíos que se ha identificado en 
este estudio es la posible existencia de sesgos en los datos de 
entrenamiento. La variabilidad en la calidad de las imágenes, 
el desequilibrio en la distribución de clases y la variedad en 
los tipos de lesiones pueden afectar la capacidad del modelo 
para generalizar en entornos clínicos reales. Es crucial que en 
futuras investigaciones se aborden estos aspectos, integrando 
conjuntos de datos más amplios y diversos que incluyan 
imágenes de diferentes fuentes y poblaciones. 

Con el fin de mejorar la robustez del modelo y reducir los 
errores de clasificación, se recomienda considerar estrategias 
como la optimización de los umbrales de decisión, la 
aplicación de técnicas de aumento de datos para diversificar el 
conjunto de entrenamiento, y la implementación de enfoques 
de aprendizaje por transferencia, mediante el uso de 
arquitecturas preentrenadas en grandes conjuntos de datos 
médicos. Además, combinar técnicas de interpretación de 
modelos, como Grad-CAM, podría ofrecer una mejor 
comprensión de las áreas de interés que la red neuronal ha 
señalado, lo que facilitaría la validación por parte de expertos 
clínicos. 

Esto se ve reflejado en la investigación dada por Salma y 
Eltrass [22] donde se propone un método basado en filtrado 
morfológico para la eliminación de vello en imágenes 
dermatológicas, compuesto por dos fases principales. 
Primero, se convierte la imagen a escala de grises mediante 
una transformación ponderada del espacio de color RGB. 
Luego, el contorno del vello se detecta mediante la 
transformación morfológica de sombrero negro. 
Posteriormente, se emplea el Método de Marcha Rápida 
(FMM) para aplicar una función de inpainting y generar una 
máscara, donde los píxeles por debajo de un umbral se asignan 
a 0 y el resto a 1. Tras el preprocesamiento, se implementa una 
estrategia de aumento de datos mediante rotaciones de 0°, 90°, 
180° y 270°, generando cuatro nuevas imágenes por cada 
original. Este procedimiento permite expandir el conjunto de 
datos y mitigar la escasez de imágenes etiquetadas. 
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Otra línea de mejora es la integración de metodologías 
híbridos que integren algoritmos de aprendizaje profundo con 
técnicas tradicionales de procesamiento de imágenes y 
métodos basados en reglas clínicas, lo que podría mejorar la 
interpretabilidad del sistema y aumentar su confiabilidad en la 
práctica médica. Además, la implementación de técnicas de 
calibración probabilística puede contribuir a disminuir la 
inseguridad en la toma de decisiones, y proporcionar 
predicciones más confiables para los especialistas en 
dermatología. 

Siendo así, los hallazgos de este estudio refuerzan el 
potencial del aprendizaje profundo en la detección temprana 
del melanoma, mostrando métricas de rendimiento 
comparables con métodos convencionales de diagnóstico. No 
obstante, la presencia de errores en la clasificación y las 
limitaciones asociadas a la calidad y diversidad de los datos 
sugieren la necesidad de futuras optimizaciones para 
garantizar su aplicabilidad en contextos clínicos reales. La 
integración de técnicas avanzadas de preprocesamiento, ajuste 
de hiperparámetros y validación en cohortes independientes 
permitirá fortalecer la eficacia del modelo, y facilitar su 
adopción como herramienta de apoyo en el diagnóstico 
dermatológico. 

V. CONCLUSIONES 
El presente estudio ha evaluado la capacidad de un 

algoritmo de redes neuronales del tipo convolucional para la 
detección y clasificación de lesiones cutáneas, y se obtuvieron 
resultados altamente satisfactorios en términos de exactitud, 
precisión, sensibilidad y puntaje F1.  

El análisis de la matriz de confusión y las métricas de 
calidad revelan que el modelo logra un equilibrio adecuado 
entre la identificación de casos positivos y negativos, con una 
tasa de falsos positivos y falsos negativos relativamente baja. 
De esta manera, la adopción del valor del área bajo la curva 
ROC (AUC) como indicador de rendimiento respalda la 
capacidad del modelo para distinguir eficazmente entre 
lesiones benignas y malignas. 

A pesar de los resultados obtenidos, se identifican 
oportunidades de optimización. La implementación de 
técnicas de preprocesamiento, como la eliminación de 
artefactos en las imágenes y el uso de aumento de datos, ha 
contribuido significativamente a la mejora del modelo. No 
obstante, futuros trabajos podrían explorar la integración de 
técnicas más avanzadas de segmentación de imágenes, ajustes 
en los umbrales de decisión y enfoques de aprendizaje activo 
para mejorar la robustez del modelo en distintos conjuntos de 
datos. 

Aunque los hallazgos de este estudio son prometedores, la 
adopción del modelo en entornos clínicos requiere 
validaciones adicionales. Es primordial evaluar su desempeño 
en escenarios del mundo real, considerando la variabilidad en 
la calidad de las imágenes y la diversidad de poblaciones de 
pacientes. La colaboración con especialistas en dermatología 
será clave para garantizar que el modelo no solo sea preciso, 
sino también interpretable y útil en la práctica médica. 
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