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Abstract—The objective of the present paper is to systematize 
contemporary approaches of green software development through 
the prism of carbon-aware scheduling methodologies and energy 
efficiency metrics at all stages of the software development life cycle 
(SDLC). The study will analyze English-language, peer-reviewed 
articles published between 2020 and 2025. The following four 
carbon-intensive scheduling strategies have been identified: 
temporal task shifting, geographic load migration, electricity price 
consideration, and dynamic resource scaling. Experimental data 
indicates the potential for a 30–70% reduction in the carbon footprint 
of applications, with only a moderate impact on latency and cost. 
The metrics employed for evaluating energy efficiency span from 
low-level measures such as code complexity and measured power 
consumption to higher-level metrics addressing infrastructure and 
integration. It has been established that disregarding the initial 
phases of the SDLC results in an underestimation of the aggregate 
carbon footprint. The analysis showed that cutting emissions can 
conflict with maintaining high service quality. It also highlighted 
problems with standardizing metrics and ensuring accurate carbon-
intensity forecasts, especially when significant task shifting is 
involved. Further unification of metrics, integration of energy 
monitoring at all stages of the SDLC, and consideration of economic 
factors are recommended.  

Keywords—green development, software, application 
development, carbon pollution 

I. INTRODUCTION 
The development of software is becoming increasingly 

driven by the integration of environmental sustainability 
principles, a response to the escalating energy intensity of 
Information and Communication Technology (ICT) 
infrastructures. Today, the ICT sector accounts for roughly 2% 
to 4% of global carbon emissions, thus rendering green 
software development an urgent challenge in the fight against 
global warming and environmental concerns [1]. Projections 
indicate that ICT may account for as much as 8% of the 
world’s energy use by 2030 [2]. The goal of green software 
development is to create products that minimize energy use 
and environmental impact at every stage of the SDLC, 
including design, implementation, maintenance, and eventual 
decommissioning. Traditionally, green computing has focused 
primarily on hardware. 

However, in the past few years, it has become steadily 
clear that software architecture, algorithms, and the way 
systems operate also play a major role in how much energy a 
system uses. This study focuses on carbon-aware scheduling, 

which means planning computational and operational tasks 
with carbon intensity and energy use in mind. It also looks at 
ways to evaluate energy efficiency throughout the different 
stages of the SDLC.  

Despite growing interest, the field is still emerging. Key 
challenges remain, such as the lack of standardized metrics, 
the complexity of isolating software energy consumption from 
hardware and operating system influences, the integration of 
sustainable practices within established DevOps pipelines, and 
clarifying the relationship between energy efficiency and 
broader sustainability outcomes. 

The objective of this review is to analyze carbon-aware 
scheduling methods in software development and energy 
efficiency, and to identify key metrics as applied to software 
development and operation. A detailed analysis of existing 
studies will provide an up-to-date overview of the field, 
supporting further research on carbon-aware software 
development practices. 

II. MATERIAL AND METHODS 
The literature review followed a structured, multi-stage 

process: identification, screening, eligibility assessment, and 
inclusion, following the general principles of PRISMA-style 
reviews. 

The search was conducted across major scientific 
databases, namely IEEE Xplore, Google Scholar, 
ScienceDirect, ACM Digital Library, Web of Science, and 
arXiv. This ensured adequate coverage of both peer-reviewed 
and preprint research. Searches targeted publications from 
2020 to 2025 and were restricted to English-language sources.  

The following keyword groups were used: 

• Primary terms: “carbon-aware scheduling,” “green 
software development,” “energy efficiency metrics 
software lifecycle,” “energy efficiency metrics,” 
“sustainable software.”  

• Secondary terms: “energy-aware computing,” “low-
carbon software design.” 

Duplicates were removed first, leaving 73 unique articles 
for screening. Articles were then screened in two stages: 

1) Title and abstract screening: 24 papers were excluded 
due to irrelevance (e.g., not addressing software systems, not 

https://orcid.org/0009-0002-7360-2152
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focused on energy or carbon metrics) or ineligible study type 
(e.g., non-scientific sources such as blogs). 

2) Full-text assessment: of the 49 remaining articles, 2 
were excluded after detailed evaluation, resulting in 47 
articles that met the inclusion criteria. Papers were included 
if they examined energy-efficiency metrics within the 
software development lifecycle, addressed carbon-aware or 
energy-aware scheduling of computational tasks, and 
provided either quantitative estimates (e.g., energy 
consumption, CO₂ savings) or qualitative evaluations 
(method comparisons, limitations). 

Particular emphasis was placed on research that explored 
carbon-aware scheduling and cost-sensitive workload 
planning, as well as studies presenting or evaluating metrics to 
assess software sustainability across the SDLC. 

III. RESULT AND DISCUSSION 

A. Evolution of Key Research Themes 
The discourse on sustainable software has evolved 

considerably over the past two decades. Initially, the concept 
was tightly coupled with “performance engineering,” where 
reducing resource consumption (CPU cycles, memory) was 
primarily a means to improve speed and reduce hardware 
costs, with energy savings being a welcome byproduct. 

The first major shift occurred as researchers began to 
explicitly target energy as a primary optimization goal. This 
led to the emergence of energy-aware computing. Early work 
in this phase focused on the operating system and hardware 
abstraction layers, developing power models for CPUs and 
other components. The research community then moved up 
the stack, investigating how programming languages, 
compilers, and software architectures contribute to energy 
usage. This phase was characterized by a focus on energy 
efficiency, minimizing the watts consumed by a software 
application to perform a given task [3].  

More recently, the theme has matured into carbon-aware 
computing. This represents a more nuanced understanding of 
environmental impact, recognizing that not all energy is 
created equal. The carbon intensity of electricity, the amount 
of greenhouse gas emitted per kilowatt-hour (kWh), varies 
significantly based on the energy source mix (e.g., renewables 
versus fossil fuels) of the electrical grid at a given time and 
location. Carbon-aware software, therefore, does not just aim 
to use less energy, it aims to consume energy when and where 
it is “cleanest.” This has led to the development of 
sophisticated scheduling techniques that align computational 
workloads with periods of low carbon intensity [4], [5]. 

A holistic perspective is developing -one that considers all 
stages of the software application lifecycle, including 
requirements engineering, UI/UX design, deployment, 
maintenance, and eventual decommissioning. This view 
argues that sustainability must be a cross-cutting concern, 
integrated into every stage of software development [6].  

In addition to the lifecycle-wide integration of 
sustainability, recent investigation has also considered the 
ethical and societal dimensions of green software [7]. As 
digital services expand globally, disparities in grid cleanliness 

across regions mean that software systems can inadvertently 
externalize environmental costs to more carbon-intensive 
areas. This raises important questions about environmental 
justice and the responsibilities of cloud providers in 
minimizing their overall footprint rather than merely shifting 
it elsewhere.  

Interdisciplinary collaborations between software 
engineers, environmental scientists, and policy experts have 
begun to shape frameworks for green software governance, 
suggesting future regulation or certification schemes that 
could mandate transparency in energy use or emissions 
reporting. These initiatives, although still emerging, highlight 
the necessity of embedding sustainability not just as a 
technical goal but as a societal obligation within software 
engineering practice. 

A foundational challenge in green software is 
measurement. The adage “you cannot improve what you 
cannot measure” is particularly salient. Research into energy 
efficiency metrics has evolved from coarse-grained, hardware-
centric measures to fine-grained, software-centric approaches. 

 Key approaches include the following: 

• Early approaches relied on physical power meters or 
processor-level instrumentation like Intel's Running 
Average Power Limit (RAPL) to evaluate the energy 
draw of entire systems. While accurate, these methods 
often struggle to attribute consumption to specific 
software processes or lines of code [8]. 

• To overcome the limitations of physical measurement, 
researchers developed statistical and machine learning 
models to estimate software energy consumption based 
on high-level performance indicators (e.g., I/O 
operations, CPU utilization, network packets). A study 
demonstrated a strong correlation between system-
level metrics and energy consumption, paving the way 
for software-based power estimation models [3], [9]. 

• “Software-energy-label,” a multi-dimensional metric 
that evaluates the energy efficiency of software 
applications, is similar to the energy labels on 
appliances. Other studies have focused on defining 
metrics relevant to specific domains, such as energy 
per transaction in database systems or energy per user 
request in web applications [6], [8]. 

A primary debate revolves around the trade-off between 
the accuracy and accessibility of metrics. Direct hardware 
measurement is the gold standard for accuracy but requires 
specialized equipment and expertise. Model-based approaches 
are more accessible and scalable but are subject to estimation 
errors and may require re-calibration for different hardware 
and software environments. There is currently no universally 
accepted standard for measuring and reporting the energy 
consumption of a software application, making it difficult to 
compare the “greenness” of different products [3]. 
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TABLE I.  EVOLUTION OF RESEARCH IN SUSTAINABLE SOFTWARE 

Theme 
Sustainability Perspective  

Main Focus Representative 
Techniques Maturity 

Performance 
Engineering  

Optimize resource 
use for speed and 

cost  

CPU and 
memory 

optimization, 
HW tuning  

High 

Energy-Aware 
Computing 

Software-level 
energy 

optimization 

OS power 
models, RAPL, 

efficient 
algorithms 

Medium-
High  

Carbon-Aware 
Computing 

Use energy where 
carbon is lowest 

Time and geo 
shifting, carbon 

forecasting  
Medium 

Lifecycle 
Sustainability 

Sustainability 
across SDLC 

Green 
requirements, 
energy-aware 

design 

Low-
Medium 

Ethical 
Sustainability  

Transparency and 
environmental 

justice 

Emissions 
accounting, 
governance 

models 

Low 

  

B. Carbon-Aware Scheduling 
There is a number of methodologies that can be employed 

to account for carbon intensity within computational 
processes. These include time-based scheduling, geographic 
shift, price-aware scheduling, and flexible scaling of 
resources. Each of these factors deserves individual 
consideration. 

Time-based scheduling is an approach that involves 
delaying batch and time-insensitive tasks to periods of low 
carbon intensity on the energy grid. It has been observed that 
users of cloud services frequently migrate batch tasks to 
periods of low carbon intensity. A comparable approach is 
employed within GAIA (Green Aware Instance Allocation), 
an environmentally oriented scheduler for batch tasks that has 
been demonstrated to produce substantial emission reductions 
while exerting a moderate impact on performance and cost. 
This approach finds application across a wide range of use 
cases, including data backup processes, machine learning 
tasks, data distribution, batch processing, and more [7]. 

The geographic shift approach entails the distribution of 
computational tasks across data centers or regions that exhibit 
a reduced carbon footprint. Souza et al. developed CASPER 
for distributed web services, which dynamically allocates load 
between geographic regions depending on local carbon 
intensity and network latency. A series of experiments has 
been conducted, yielding findings that demonstrate the 
potential for a carbon reduction of up to 70% while 
concurrently ensuring the maintenance of Service Level 
Objectives (SLOs) concerning latency [10]. In a similar vein, 
Lechowicz et al. proposed PCAPS, a scheduler for 
computational processes that takes into account both time-
dependent carbon intensity and geographical location, as well 
as task prioritization and ordering. A PCAPS prototype in a 
cluster of 100 nodes reduced the carbon footprint to 32.9% of 
the baseline, with no noticeable loss of efficiency [11].  

Price-aware scheduling is a price-conscious approach. It is 
evident from a substantial set of research publications that the 
importance of the prices of computing resources and services 
is frequently emphasized [12], [13], [14], [15], [16]. Z. Miao 
et al. suggest that cloud service and computing providers 
should take into consideration the carbon intensity of 

electricity costs and the fluctuations in renewable energy 
across different locations and times. Indeed, models such as 
ECMR take into account both carbon intensity and local 
electricity prices simultaneously, thus minimizing emissions 
at an acceptable monetary cost. The ECMR algorithm for 
distributed machine learning tasks has been demonstrated to 
enhance renewable energy utilization by up to 90.8% while 
simultaneously reducing carbon emissions by 30% in 
comparison with the baseline carbon-aware ML methods [17]. 

In the context of resource allocation, the concept of 
flexible scaling has been proposed by Hanafy et al. This 
approach involves the dynamic adjustment of the computing 
cluster's capacity in response to variations in carbon intensity. 
In circumstances where the carbon intensity is minimal, the 
cluster will allocate a greater quantity of resources. 
Conversely, in instances of elevated emissions, the cluster will 
allocate a reduced quantity of resources. The prediction of 
carbon intensity is achieved through the analysis of historical 
data or the utilization of machine learning techniques. This 
approach precludes the simultaneous preparation of all tasks, 
thus circumventing the “buffalo herd” effect, wherein the 
adoption of a similar low-carbon timeframe can surpass 
computational capacity, consequently leading to increased 
carbon emissions. CarboneFlex has demonstrated a 57% 
reduction in emissions in comparison with conventional task 
scheduling [18]. 

Another promising development is the integration of 
carbon-aware strategies into container orchestration 
platforms. Kubernetes, for instance, is being extended through 
plugins and custom schedulers to enable energy-aware and 
carbon-aware task placements. Research prototypes have 
demonstrated the feasibility of integrating carbon-intensity 
forecasts as a scheduling signal, allowing pods to be launched 
in regions or at times that minimize carbon emissions. These 
advances open the door to mainstreaming sustainability 
features in cloud-native systems, though they still face 
technical barriers in standardization, performance impact, and 
developer adoption [19]. 

The study emphasizes that architectural patterns and 
microservice granularity can substantially impact energy 
consumption [20]. Fine-grained microservices often result in 
elevated network traffic and resource duplication, thereby 
increasing runtime energy use. Xiao et al. show that selecting 
service co-location or modular reuse patterns can mitigate 
these inefficiencies and enhance energy performance [21].  

Hybrid strategies that combine multiple scheduling 
techniques (time-based and geographic shifting with price-
aware models) have shown superior results in experimental 
settings, offering flexible trade-offs across cost, latency, and 
emissions [7], [21], [22]. However, these models demand 
high-quality, real-time data pipelines for energy pricing and 
carbon intensity, which remain unreliable or unavailable in 
many regions [23]. As such, future research must also focus 
on data infrastructure and interoperability standards to enable 
wider deployment of carbon-aware systems. 

Despite promising results, carbon-aware scheduling has 
some fundamental problems: 

• Geographic shifting itself consumes energy and 
generates network traffic, the carbon footprint of which 
must be considered, according to Y. Guo et al. [24]. In 
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some cases, the carbon cost of data transmission can 
negate the benefits of cleaner energy. 

• The Rebound Effect refers to the phenomenon where 
efforts to maximize green energy efficiency result in 
increased overall computation, which can ultimately 
cause a rise in total energy consumption instead of a 
reduction [25]. 

• Designing and implementing complex process 
schedulers requires significant effort and changes to 
existing container management platforms such as 
Kubernetes. As noted by P. Wiesner et al., most current 
systems do not have built-in mechanisms to account for 
carbon intensity. It can be concluded that time-based 
shifting is a relatively simple and efficient method [26]. 

TABLE II.  CARBON-AWARE SCHEDULING TECHNIQUES 

Technique 
Concept Overview  

Core Idea Examples Key Limitations 

Time-Based 
Scheduling 

Delay tasks to 
low-carbon 

periods 

GAIA, batch 
deferral 

Latency, 
unsuitable for 
real-time tasks 

Geographic 
Shifting 

Run in cleaner 
regions 

CASPER, 
PCAPS 

Network 
latency, data 
transport cost 

Price-Aware 
Scheduling 

Use electricity 
price signals ECMR 

Requires 
accurate price 

and carbon data 

Flexible 
Scaling 

Scale resources 
by carbon 
intensity 

CarboneFlex 

Needs 
forecasting, 
throughput 

impact 
Carbon-
Aware 

Orchestration 

Carbon signals in 
K8s schedulers 

Custom K8s 
plugins 

Lack of 
standardization 

Hybrid 
Models 

Combine time, 
geo, and price 

Multi-factor 
schedulers 

Complexity 
unreliable data 

streams 
 

 Geographic shifting, however, has the potential to 
significantly reduce emissions, but reliable data on carbon 
intensity in different regions and accounting for network 
delays are prerequisites. It is evident that the aforementioned 
methods frequently presuppose information regarding task 
duration, power price dynamics, computing resource prices, 
local carbon emissions, or the capacity for deferred loading of 
computing resources. This complicates the practical 
implementation for a substantial number of tasks, including 
those of significant importance. 

C. Energy efficiency metrics in the SDLC phases 
The assessment of software energy efficiency is a 

fundamental task, without which progress in the field of green 
engineering is impossible. At present, there is an absence of a 
standardized metric to assess the energy efficiency and 
environmental effectiveness of computational tasks, as well as 
software development and maintenance activities. It is 
acknowledged that a variety of metrics may be implemented 
during the different phases of software development. Each of 
these metrics possesses its own unique characteristics, 
advantages, and disadvantages. Current research focuses on 
developing precise metrics for the various phases of the 
SDLC. A review of the existing literature shows that certain 

approaches and metrics are far more commonly used than 
others. 

In the initial phases of the SDLC, the direct measurement 
of energy consumption is often challenging. Consequently, 
researchers propose the use of indirect metrics. To achieve this 
objective, static code characteristics are analyzed and 
correlated with CPU and memory resource consumption. 
These characteristics include cyclomatic complexity, the use 
of specific data structures, and code length [27]. Several 
studies have demonstrated a strong correlation between these 
metrics and energy efficiency [28], [29]. However, other 
studies have shown that compilation and processor-level 
optimizations can make these dependencies non-linear and 
unpredictable [30], [31]. 

In the following section, a series of more direct approaches 
are proposed for the testing phase. For instance, incorporating 
energy profiling tools, such as Intel Power Gadget, into 
Continuous Integration/Continuous Delivery (CI/CD) 
pipelines enables the automated assessment of energy 
expenditure during the execution of tests. This allows for the 
identification of “energy regressions,” i.e., code changes that 
inadvertently increase energy consumption [32]. The primary 
limitation in this context is that results depend heavily on the 
specific characteristics of the hardware and software 
environment, which hinders comparison and generalization. 

As Kruglov and Succi observe, in the initial phases of 
development, metrics such as module complexity, coupling, 
and cohesion can be evaluated. The authors note that metrics 
of code cohesion show a stronger correlation with energy 
consumption than metrics of size or inheritance [33]. This 
helps identify “dark zones” of potential inefficiency during the 
code design and implementation stages. However, significant 
energy consumption data only becomes available at later 
phases, i.e., during software testing and deployment. 
Therefore, end-to-end tracking of metrics across the entire 
SDLC is necessary. 

Direct metrics of power consumption use either hardware 
meters or software models, such as RAPL, which provide 
estimates of power usage by processor components. The issue 
with models like RAPL is that they do not account for the 
consumption of RAM, disks, NICs, and other components, 
which can lead to underestimates of total energy use [34]. 

In the context of software deployment, it is imperative to 
meticulously measure two critical metrics: the power 
consumption of services and the load on servers. In 
operational mode, the carbon footprint (CO₂-equivalent) and 
energy consumption in kWh per unit of workflow, such as per 
request or transaction, are frequently utilized. As widely 
acknowledged in the academic community, prevailing green 
infrastructure metrics, such as Power Usage Effectiveness 
(PUE), Data Center Infrastructure Efficiency (DCiE), and 
Carbon Usage Effectiveness (CUE), focus on data centers. 
However, these metrics do not account for software aspects or 
load fluctuations at the application level [35]. 

New initiatives propose considering the efficiency 
“inside” servers (SPUE) or calculating Software Carbon 
Intensity (SCI), the normalized carbon footprint of software 
per functional unit [36], [37], [38]. The trend toward 
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standardization of SCI in ISO 14064/21031 reflects 
recognition of the need for software-level metrics [39].  

 The SCI can be calculated using the following formula: 

 SCI = (E × I + M) / R () 

where E is the energy consumed by the software, I is the 
carbon intensity, M is the carbon footprint associated with 
hardware production, and R is the functional unit (e.g., number 
of users or API requests).  

A limitation of the SCI metric is the difficulty of accurately 
measuring the value of M and defining a relevant functional 
unit R for complex systems, as previously outlined.  

T. Simon et al. emphasize that their evaluation model 
distributes the overall impact between the “development” and 
“use” phases and demonstrate that the optimization of just one 
phase can result in a shift of the burden to the other phase [40]. 
In their example, the significance of the impact of the 
development phase was given greater weight, despite the focus 
traditionally being on operations. It is imperative to recognize 
that the evaluation of any metric at a specific stage of the 
SDLC is crucial. As Kruglov and Succi have highlighted, a 
comprehensive assessment of a project's performance and 
environmental impact can only be achieved through the 
integration of measurements across all developmental stages 
[33]. 

A considerable number of methodologies have been 
demonstrated to result in substantial emission reductions; 
however, it is crucial to acknowledge that these outcomes are 
frequently accompanied by trade-offs. For instance, Hanafy et 
al. demonstrate that as carbon savings increase, task delays 
and costs also rise due to idling reserves. The authors observe 
that their algorithms achieve a twofold increase in carbon 
savings for every percentage point increase in cost, 
concomitantly reducing the additional delay by 26% [7]. In 
other words, the consistent reduction in energy demands 
frequently necessitates the allocation of resources and 
additional time, thereby constraining implementation in 
critical systems. 

The efficacy of such estimation and control methods is 
constrained by assumptions regarding the availability of data 
on load dynamics and energy sources. Algorithms frequently 
presuppose precise prediction of network carbon intensity and 
task duration. In the event of such data being inaccurate, the 
decisions made may be suboptimal. The issue of delayed task 
execution is also pertinent. It is noteworthy that not all studies 
account for network delay in geographic migration, although 
the issue is addressed in CASPER [10].  

Another critical direction involves the automation of 
sustainability evaluation within development workflows. 
Upcoming tools seek to provide real-time energy feedback to 
developers by integrating estimators and profilers directly into 
IDEs and version control systems. For example, plug-ins can 
highlight energy hotspots in code as developers write it, 
allowing for just-in-time greenness corrections. While still in 
the early stages, such tooling has the potential to transform 
sustainability from a late-stage consideration to a core part of 
the coding process. 

Additionally, recent work explores how AI-assisted 
refactoring tools might recommend low-energy alternatives 
for common patterns or inefficient loops [41]. These 

innovations reflect the increasing alignment between green 
software engineering and developer productivity ecosystems. 
Cross-field research is beginning to explore the psychological 
and behavioral factors that influence how developers respond 
to energy metrics, suggesting that future tools must be not only 
accurate but also actionable and motivating to drive change in 
software design practices. 

Nevertheless, the identified works form the foundations of 
green software engineering approaches, indicating directions 
for further research, integrating metrics throughout the SDLC, 
automating code greenness control, and considering economic 
factors in resource scheduling. 

Another rising aspect of energy efficiency in the SDLC is 
the integration of sustainability considerations into software 
architecture and design patterns. Research has shown that 
architectural choices, such as the adoption of microservices 
versus monolithic structures, can have a significant impact on 
energy consumption [19]. For example, microservice-based 
systems may increase network traffic and idle time due to 
container overhead and distributed communication, whereas 
monolithic designs, while less scalable, can result in lower 
baseline energy use under certain conditions. This highlights 
the need for sustainability-aware architecture trade-off 
analysis, where energy implications are considered alongside 
maintainability, performance, and scalability.  

Similarly, the choice of programming language and 
runtime environment has been scrutinized in recent studies 
[42], [43], [44]. For instance, compiled languages such as C++ 
or Rust typically produce more energy-efficient executables 
than interpreted languages like Python or JavaScript, though 
the development speed and ecosystem support may differ. 
Benchmarks across common workloads (e.g., compression, 
parsing, web serving) confirm that language-level decisions 
are not trivial in the context of energy use. The growing 
interest in domain-specific languages (DSLs) for energy-
constrained environments (such as IoT and edge computing) 
further exemplifies this direction, suggesting the co-evolution 
of tools, languages, and sustainable practices. The field is also 
beginning to explore the long-term effects of software bloat 
and feature creep on sustainability.  

As software systems accumulate features, dependencies, 
and technical debt, they tend to grow in size and complexity, 
often requiring more resources to run, update, and maintain. 
This phenomenon, known as “code rot” or “software obesity”, 
introduces persistent overheads, especially when running on 
cloud infrastructure where idle resources still consume 
electricity [45]. Lean software engineering principles are 
being revisited through a sustainability lens, encouraging 
minimalist, modular, and refactorable designs as mechanisms 
for long-term energy savings. 

TABLE III.  ENERGY OPTIMIZATION APPROACHES 

SDLC Phase 
Evaluation Framework 

Optimization 
Approach Methods Effectiveness 

Planning High-level 
energy goals 

Green 
requirements, 
sustainability 

guidelines 

Medium 

Analysis 

Evaluate 
potential 
energy 
impact 

Software 
modeling, 

architectural trade-
offs 

Medium 
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SDLC Phase 
Evaluation Framework 

Optimization 
Approach Methods Effectiveness 

Design 
Energy-
aware 

architecture 

Component 
selection, 

modularity, low-
power design 

patterns 

Medium-
High 

Implementation 
Efficient 

code 
development 

Energy-efficient 
algorithms, linters, 

static analysis 

Medium-
High 

Testing 

Energy 
regression 

and 
monitoring 

RAPL, Intel 
Power Gadget, 

automated energy 
tests 

Medium 

Maintenance 
Reduce long-
term energy 

cost 

Refactoring, code 
bloat reduction, 

continuous 
monitoring 

Low-
Medium 

 

 Optimizing reuse without bloating systems is thus an 
active area of exploration. Finally, education and cultural 
change within the software engineering profession are 
becoming central to the green software movement. Studies 
have shown that many developers remain unaware of the 
energy implications of their design and implementation 
decisions, or lack the tools and incentives to prioritize 
sustainability [46], [47]. This has spurred the creation of 
educational materials, guidelines (e.g., the Green Software 
Foundation’s principles), and even university courses on 
sustainable computing. 

Bridging the knowledge gap between energy modeling 
experts and everyday developers is crucial if green practices 
are to become mainstream rather than niche. As sustainability 
becomes a shared responsibility, fostering a culture that values 
efficiency, transparency, and accountability will be just as 
important as advancing technical solutions. 

IV. CONCLUSION 
The review demonstrates that carbon-aware scheduling 

and energy efficiency metrics are active research areas for 
green software development from 2020 onwards. It is vital to 
employ critical scheduling strategies, including temporal 
shifting of tasks, geographic and price-based load balancing, 
and dynamic resource scaling. Experimental evidence shows 
that these techniques can reduce the carbon footprint of 
applications and computational processes by tens of percent. 
However, many of these methods remain at the prototype 
stage, and their deployment often involves trade-offs between 
emissions, performance, and cost. 

A key finding is the necessity for end-to-end measurement 
across all stages of the SDLC. Current metrics inadequately 
capture software-level energy efficiency or account for 
application performance. The Software Carbon Intensity 
(SCI) metric, while promising, remains immature and requires 
rigorous validation. Future work should focus on developing 
standardized, cross-platform metrics that integrate energy, 
carbon, and performance indicators, enabling fair comparison 
and benchmarking of software systems. 

Key strategies to promote sustainable software 
development include: 

1) Integration of energy metrics into development 
workflows: Incorporate energy profiling, SCI estimators, and 
carbon-aware alerts directly into IDEs, CI/CD pipelines, and 
testing frameworks to enable developers to optimize energy 
use as they code. 

2) Adoption of carbon-aware scheduling in cloud 
environments: Encourage cloud providers to expose real-time 
carbon intensity data and pricing signals, enabling 
applications to dynamically shift workloads across time and 
geography. 

3) Standardization and benchmarking: Establish open 
datasets for carbon intensity, shared benchmarks for energy 
efficiency, and guidelines for SCI reporting to foster 
transparency and comparability. 

4) Education and cultural change: Train software 
engineers on sustainable design patterns, energy-efficient 
programming practices, and the environmental implications 
of software architecture choices. 

5) Policy and regulatory alignment: Encourage 
policymakers to incentivize sustainable software 
development through certifications, disclosure requirements, 
or carbon-aware procurement policies. 

6) Interdisciplinary collaboration: Promote partnerships 
among academia, industry, and environmental science to co-
develop frameworks that balance performance, cost, and 
sustainability in real-world software systems. 

Looking ahead, the successful realization of green 
software systems will require a synergy of technical, 
organizational, and policy innovations. Scalable, interoperable 
infrastructures that operationalize sustainability without 
compromising functionality or accessibility must become the 
norm. As digital services underpin critical societal functions, 
software energy efficiency is no longer a niche concern and 
has become a crucial enabler of climate action. Only through 
coordinated efforts across stakeholders can the software 
industry make a meaningful contribution to global emissions 
reduction goals. 
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