
69

M
. P

ia
st

o
u,

“G

re
en

 s
o

ft
w

ar
e

d
ev

el
o

p
m

en
t

us
in

g
 c

ar
b

o
n-

aw
ar

e
sc

he
d

ul
in

g
 t

ec
hn

iq
ue

s
an

d
 e

ne
rg

y
effi

ci
en

cy
 m

et
ri

cs
 t

hr
o

ug
ho

ut
 t

he
 S

D
LC

”,
La

ti
n-

A
m

er
ic

an
 J

o
ur

na
l o

f
C

o
m

p
ut

in
g

 (
L

A
JC

),
 v

o
l.

13
, n

o
. 1

, 2
0

26
.

Green software
development using

carbon-aware scheduling
techniques and energy

efficiency metrics
throughout the SDLC

ARTICLE HISTORY
Received 31 July 2025
Accepted 19 November 2025
Published 6 January 2026

Mikita Piastou
University of West Georgia
School of Computing, Analytics, and Modeling
Carrollton, United States
mpiasto1@my.westga.edu
ORCID: 0009-0002-7360-2152

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2026

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2026 70
DOI:

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
III

, I
ss

ue
 1

, J
an

ua
ry

 2
0

26

10.5281/zenodo.17781203

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol XIII, Issue 1, January - June 2026

Green software development using carbon-aware
scheduling techniques and energy efficiency metrics

throughout the SDLC

 Mikita Piastou
University of West Georgia

School of Computing, Analytics, and
Modeling

Carrollton, United States
mpiasto1@my.westga.edu

Abstract—The objective of the present paper is to systematize
contemporary approaches of green software development through
the prism of carbon-aware scheduling methodologies and energy
efficiency metrics at all stages of the software development life cycle
(SDLC). The study will analyze English-language, peer-reviewed
articles published between 2020 and 2025. The following four
carbon-intensive scheduling strategies have been identified:
temporal task shifting, geographic load migration, electricity price
consideration, and dynamic resource scaling. Experimental data
indicates the potential for a 30–70% reduction in the carbon footprint
of applications, with only a moderate impact on latency and cost.
The metrics employed for evaluating energy efficiency span from
low-level measures such as code complexity and measured power
consumption to higher-level metrics addressing infrastructure and
integration. It has been established that disregarding the initial
phases of the SDLC results in an underestimation of the aggregate
carbon footprint. The analysis showed that cutting emissions can
conflict with maintaining high service quality. It also highlighted
problems with standardizing metrics and ensuring accurate carbon-
intensity forecasts, especially when significant task shifting is
involved. Further unification of metrics, integration of energy
monitoring at all stages of the SDLC, and consideration of economic
factors are recommended.

Keywords—green development, software, application
development, carbon pollution

I. INTRODUCTION
The development of software is becoming increasingly

driven by the integration of environmental sustainability
principles, a response to the escalating energy intensity of
Information and Communication Technology (ICT)
infrastructures. Today, the ICT sector accounts for roughly 2%
to 4% of global carbon emissions, thus rendering green
software development an urgent challenge in the fight against
global warming and environmental concerns [1]. Projections
indicate that ICT may account for as much as 8% of the
world’s energy use by 2030 [2]. The goal of green software
development is to create products that minimize energy use
and environmental impact at every stage of the SDLC,
including design, implementation, maintenance, and eventual
decommissioning. Traditionally, green computing has focused
primarily on hardware.

However, in the past few years, it has become steadily
clear that software architecture, algorithms, and the way
systems operate also play a major role in how much energy a
system uses. This study focuses on carbon-aware scheduling,

which means planning computational and operational tasks
with carbon intensity and energy use in mind. It also looks at
ways to evaluate energy efficiency throughout the different
stages of the SDLC.

Despite growing interest, the field is still emerging. Key
challenges remain, such as the lack of standardized metrics,
the complexity of isolating software energy consumption from
hardware and operating system influences, the integration of
sustainable practices within established DevOps pipelines, and
clarifying the relationship between energy efficiency and
broader sustainability outcomes.

The objective of this review is to analyze carbon-aware
scheduling methods in software development and energy
efficiency, and to identify key metrics as applied to software
development and operation. A detailed analysis of existing
studies will provide an up-to-date overview of the field,
supporting further research on carbon-aware software
development practices.

II. MATERIAL AND METHODS
The literature review followed a structured, multi-stage

process: identification, screening, eligibility assessment, and
inclusion, following the general principles of PRISMA-style
reviews.

The search was conducted across major scientific
databases, namely IEEE Xplore, Google Scholar,
ScienceDirect, ACM Digital Library, Web of Science, and
arXiv. This ensured adequate coverage of both peer-reviewed
and preprint research. Searches targeted publications from
2020 to 2025 and were restricted to English-language sources.

The following keyword groups were used:

• Primary terms: “carbon-aware scheduling,” “green
software development,” “energy efficiency metrics
software lifecycle,” “energy efficiency metrics,”
“sustainable software.”

• Secondary terms: “energy-aware computing,” “low-
carbon software design.”

Duplicates were removed first, leaving 73 unique articles
for screening. Articles were then screened in two stages:

1) Title and abstract screening: 24 papers were excluded
due to irrelevance (e.g., not addressing software systems, not

https://orcid.org/0009-0002-7360-2152

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2026 71
DOI:

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
III

, I
ss

ue
 1

, J
an

ua
ry

 2
0

26

10.5281/zenodo.17781203

M. Piastou,
“Green software development using carbon-aware scheduling techniques

and energy efficiency metrics throughout the SDLC”,
Latin-American Journal of Computing (LAJC), vol. 13, no. 1, 2026.

focused on energy or carbon metrics) or ineligible study type
(e.g., non-scientific sources such as blogs).

2) Full-text assessment: of the 49 remaining articles, 2
were excluded after detailed evaluation, resulting in 47
articles that met the inclusion criteria. Papers were included
if they examined energy-efficiency metrics within the
software development lifecycle, addressed carbon-aware or
energy-aware scheduling of computational tasks, and
provided either quantitative estimates (e.g., energy
consumption, CO₂ savings) or qualitative evaluations
(method comparisons, limitations).

Particular emphasis was placed on research that explored
carbon-aware scheduling and cost-sensitive workload
planning, as well as studies presenting or evaluating metrics to
assess software sustainability across the SDLC.

III. RESULT AND DISCUSSION

A. Evolution of Key Research Themes
The discourse on sustainable software has evolved

considerably over the past two decades. Initially, the concept
was tightly coupled with “performance engineering,” where
reducing resource consumption (CPU cycles, memory) was
primarily a means to improve speed and reduce hardware
costs, with energy savings being a welcome byproduct.

The first major shift occurred as researchers began to
explicitly target energy as a primary optimization goal. This
led to the emergence of energy-aware computing. Early work
in this phase focused on the operating system and hardware
abstraction layers, developing power models for CPUs and
other components. The research community then moved up
the stack, investigating how programming languages,
compilers, and software architectures contribute to energy
usage. This phase was characterized by a focus on energy
efficiency, minimizing the watts consumed by a software
application to perform a given task [3].

More recently, the theme has matured into carbon-aware
computing. This represents a more nuanced understanding of
environmental impact, recognizing that not all energy is
created equal. The carbon intensity of electricity, the amount
of greenhouse gas emitted per kilowatt-hour (kWh), varies
significantly based on the energy source mix (e.g., renewables
versus fossil fuels) of the electrical grid at a given time and
location. Carbon-aware software, therefore, does not just aim
to use less energy, it aims to consume energy when and where
it is “cleanest.” This has led to the development of
sophisticated scheduling techniques that align computational
workloads with periods of low carbon intensity [4], [5].

A holistic perspective is developing -one that considers all
stages of the software application lifecycle, including
requirements engineering, UI/UX design, deployment,
maintenance, and eventual decommissioning. This view
argues that sustainability must be a cross-cutting concern,
integrated into every stage of software development [6].

In addition to the lifecycle-wide integration of
sustainability, recent investigation has also considered the
ethical and societal dimensions of green software [7]. As
digital services expand globally, disparities in grid cleanliness

across regions mean that software systems can inadvertently
externalize environmental costs to more carbon-intensive
areas. This raises important questions about environmental
justice and the responsibilities of cloud providers in
minimizing their overall footprint rather than merely shifting
it elsewhere.

Interdisciplinary collaborations between software
engineers, environmental scientists, and policy experts have
begun to shape frameworks for green software governance,
suggesting future regulation or certification schemes that
could mandate transparency in energy use or emissions
reporting. These initiatives, although still emerging, highlight
the necessity of embedding sustainability not just as a
technical goal but as a societal obligation within software
engineering practice.

A foundational challenge in green software is
measurement. The adage “you cannot improve what you
cannot measure” is particularly salient. Research into energy
efficiency metrics has evolved from coarse-grained, hardware-
centric measures to fine-grained, software-centric approaches.

 Key approaches include the following:

• Early approaches relied on physical power meters or
processor-level instrumentation like Intel's Running
Average Power Limit (RAPL) to evaluate the energy
draw of entire systems. While accurate, these methods
often struggle to attribute consumption to specific
software processes or lines of code [8].

• To overcome the limitations of physical measurement,
researchers developed statistical and machine learning
models to estimate software energy consumption based
on high-level performance indicators (e.g., I/O
operations, CPU utilization, network packets). A study
demonstrated a strong correlation between system-
level metrics and energy consumption, paving the way
for software-based power estimation models [3], [9].

• “Software-energy-label,” a multi-dimensional metric
that evaluates the energy efficiency of software
applications, is similar to the energy labels on
appliances. Other studies have focused on defining
metrics relevant to specific domains, such as energy
per transaction in database systems or energy per user
request in web applications [6], [8].

A primary debate revolves around the trade-off between
the accuracy and accessibility of metrics. Direct hardware
measurement is the gold standard for accuracy but requires
specialized equipment and expertise. Model-based approaches
are more accessible and scalable but are subject to estimation
errors and may require re-calibration for different hardware
and software environments. There is currently no universally
accepted standard for measuring and reporting the energy
consumption of a software application, making it difficult to
compare the “greenness” of different products [3].

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2026 72
DOI:

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
III

, I
ss

ue
 1

, J
an

ua
ry

 2
0

26

10.5281/zenodo.17781203

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol XIII, Issue 1, January - June 2026.

TABLE I. EVOLUTION OF RESEARCH IN SUSTAINABLE SOFTWARE

Theme
Sustainability Perspective

Main Focus Representative
Techniques Maturity

Performance
Engineering

Optimize resource
use for speed and

cost

CPU and
memory

optimization,
HW tuning

High

Energy-Aware
Computing

Software-level
energy

optimization

OS power
models, RAPL,

efficient
algorithms

Medium-
High

Carbon-Aware
Computing

Use energy where
carbon is lowest

Time and geo
shifting, carbon

forecasting
Medium

Lifecycle
Sustainability

Sustainability
across SDLC

Green
requirements,
energy-aware

design

Low-
Medium

Ethical
Sustainability

Transparency and
environmental

justice

Emissions
accounting,
governance

models

Low

B. Carbon-Aware Scheduling
There is a number of methodologies that can be employed

to account for carbon intensity within computational
processes. These include time-based scheduling, geographic
shift, price-aware scheduling, and flexible scaling of
resources. Each of these factors deserves individual
consideration.

Time-based scheduling is an approach that involves
delaying batch and time-insensitive tasks to periods of low
carbon intensity on the energy grid. It has been observed that
users of cloud services frequently migrate batch tasks to
periods of low carbon intensity. A comparable approach is
employed within GAIA (Green Aware Instance Allocation),
an environmentally oriented scheduler for batch tasks that has
been demonstrated to produce substantial emission reductions
while exerting a moderate impact on performance and cost.
This approach finds application across a wide range of use
cases, including data backup processes, machine learning
tasks, data distribution, batch processing, and more [7].

The geographic shift approach entails the distribution of
computational tasks across data centers or regions that exhibit
a reduced carbon footprint. Souza et al. developed CASPER
for distributed web services, which dynamically allocates load
between geographic regions depending on local carbon
intensity and network latency. A series of experiments has
been conducted, yielding findings that demonstrate the
potential for a carbon reduction of up to 70% while
concurrently ensuring the maintenance of Service Level
Objectives (SLOs) concerning latency [10]. In a similar vein,
Lechowicz et al. proposed PCAPS, a scheduler for
computational processes that takes into account both time-
dependent carbon intensity and geographical location, as well
as task prioritization and ordering. A PCAPS prototype in a
cluster of 100 nodes reduced the carbon footprint to 32.9% of
the baseline, with no noticeable loss of efficiency [11].

Price-aware scheduling is a price-conscious approach. It is
evident from a substantial set of research publications that the
importance of the prices of computing resources and services
is frequently emphasized [12], [13], [14], [15], [16]. Z. Miao
et al. suggest that cloud service and computing providers
should take into consideration the carbon intensity of

electricity costs and the fluctuations in renewable energy
across different locations and times. Indeed, models such as
ECMR take into account both carbon intensity and local
electricity prices simultaneously, thus minimizing emissions
at an acceptable monetary cost. The ECMR algorithm for
distributed machine learning tasks has been demonstrated to
enhance renewable energy utilization by up to 90.8% while
simultaneously reducing carbon emissions by 30% in
comparison with the baseline carbon-aware ML methods [17].

In the context of resource allocation, the concept of
flexible scaling has been proposed by Hanafy et al. This
approach involves the dynamic adjustment of the computing
cluster's capacity in response to variations in carbon intensity.
In circumstances where the carbon intensity is minimal, the
cluster will allocate a greater quantity of resources.
Conversely, in instances of elevated emissions, the cluster will
allocate a reduced quantity of resources. The prediction of
carbon intensity is achieved through the analysis of historical
data or the utilization of machine learning techniques. This
approach precludes the simultaneous preparation of all tasks,
thus circumventing the “buffalo herd” effect, wherein the
adoption of a similar low-carbon timeframe can surpass
computational capacity, consequently leading to increased
carbon emissions. CarboneFlex has demonstrated a 57%
reduction in emissions in comparison with conventional task
scheduling [18].

Another promising development is the integration of
carbon-aware strategies into container orchestration
platforms. Kubernetes, for instance, is being extended through
plugins and custom schedulers to enable energy-aware and
carbon-aware task placements. Research prototypes have
demonstrated the feasibility of integrating carbon-intensity
forecasts as a scheduling signal, allowing pods to be launched
in regions or at times that minimize carbon emissions. These
advances open the door to mainstreaming sustainability
features in cloud-native systems, though they still face
technical barriers in standardization, performance impact, and
developer adoption [19].

The study emphasizes that architectural patterns and
microservice granularity can substantially impact energy
consumption [20]. Fine-grained microservices often result in
elevated network traffic and resource duplication, thereby
increasing runtime energy use. Xiao et al. show that selecting
service co-location or modular reuse patterns can mitigate
these inefficiencies and enhance energy performance [21].

Hybrid strategies that combine multiple scheduling
techniques (time-based and geographic shifting with price-
aware models) have shown superior results in experimental
settings, offering flexible trade-offs across cost, latency, and
emissions [7], [21], [22]. However, these models demand
high-quality, real-time data pipelines for energy pricing and
carbon intensity, which remain unreliable or unavailable in
many regions [23]. As such, future research must also focus
on data infrastructure and interoperability standards to enable
wider deployment of carbon-aware systems.

Despite promising results, carbon-aware scheduling has
some fundamental problems:

• Geographic shifting itself consumes energy and
generates network traffic, the carbon footprint of which
must be considered, according to Y. Guo et al. [24]. In

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2026 73
DOI:

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
III

, I
ss

ue
 1

, J
an

ua
ry

 2
0

26

10.5281/zenodo.17781203

M. Piastou,
“Green software development using carbon-aware scheduling techniques

and energy efficiency metrics throughout the SDLC”,
Latin-American Journal of Computing (LAJC), vol. 13, no. 1, 2026.

some cases, the carbon cost of data transmission can
negate the benefits of cleaner energy.

• The Rebound Effect refers to the phenomenon where
efforts to maximize green energy efficiency result in
increased overall computation, which can ultimately
cause a rise in total energy consumption instead of a
reduction [25].

• Designing and implementing complex process
schedulers requires significant effort and changes to
existing container management platforms such as
Kubernetes. As noted by P. Wiesner et al., most current
systems do not have built-in mechanisms to account for
carbon intensity. It can be concluded that time-based
shifting is a relatively simple and efficient method [26].

TABLE II. CARBON-AWARE SCHEDULING TECHNIQUES

Technique
Concept Overview

Core Idea Examples Key Limitations

Time-Based
Scheduling

Delay tasks to
low-carbon

periods

GAIA, batch
deferral

Latency,
unsuitable for
real-time tasks

Geographic
Shifting

Run in cleaner
regions

CASPER,
PCAPS

Network
latency, data
transport cost

Price-Aware
Scheduling

Use electricity
price signals ECMR

Requires
accurate price

and carbon data

Flexible
Scaling

Scale resources
by carbon
intensity

CarboneFlex

Needs
forecasting,
throughput

impact
Carbon-
Aware

Orchestration

Carbon signals in
K8s schedulers

Custom K8s
plugins

Lack of
standardization

Hybrid
Models

Combine time,
geo, and price

Multi-factor
schedulers

Complexity
unreliable data

streams

 Geographic shifting, however, has the potential to
significantly reduce emissions, but reliable data on carbon
intensity in different regions and accounting for network
delays are prerequisites. It is evident that the aforementioned
methods frequently presuppose information regarding task
duration, power price dynamics, computing resource prices,
local carbon emissions, or the capacity for deferred loading of
computing resources. This complicates the practical
implementation for a substantial number of tasks, including
those of significant importance.

C. Energy efficiency metrics in the SDLC phases
The assessment of software energy efficiency is a

fundamental task, without which progress in the field of green
engineering is impossible. At present, there is an absence of a
standardized metric to assess the energy efficiency and
environmental effectiveness of computational tasks, as well as
software development and maintenance activities. It is
acknowledged that a variety of metrics may be implemented
during the different phases of software development. Each of
these metrics possesses its own unique characteristics,
advantages, and disadvantages. Current research focuses on
developing precise metrics for the various phases of the
SDLC. A review of the existing literature shows that certain

approaches and metrics are far more commonly used than
others.

In the initial phases of the SDLC, the direct measurement
of energy consumption is often challenging. Consequently,
researchers propose the use of indirect metrics. To achieve this
objective, static code characteristics are analyzed and
correlated with CPU and memory resource consumption.
These characteristics include cyclomatic complexity, the use
of specific data structures, and code length [27]. Several
studies have demonstrated a strong correlation between these
metrics and energy efficiency [28], [29]. However, other
studies have shown that compilation and processor-level
optimizations can make these dependencies non-linear and
unpredictable [30], [31].

In the following section, a series of more direct approaches
are proposed for the testing phase. For instance, incorporating
energy profiling tools, such as Intel Power Gadget, into
Continuous Integration/Continuous Delivery (CI/CD)
pipelines enables the automated assessment of energy
expenditure during the execution of tests. This allows for the
identification of “energy regressions,” i.e., code changes that
inadvertently increase energy consumption [32]. The primary
limitation in this context is that results depend heavily on the
specific characteristics of the hardware and software
environment, which hinders comparison and generalization.

As Kruglov and Succi observe, in the initial phases of
development, metrics such as module complexity, coupling,
and cohesion can be evaluated. The authors note that metrics
of code cohesion show a stronger correlation with energy
consumption than metrics of size or inheritance [33]. This
helps identify “dark zones” of potential inefficiency during the
code design and implementation stages. However, significant
energy consumption data only becomes available at later
phases, i.e., during software testing and deployment.
Therefore, end-to-end tracking of metrics across the entire
SDLC is necessary.

Direct metrics of power consumption use either hardware
meters or software models, such as RAPL, which provide
estimates of power usage by processor components. The issue
with models like RAPL is that they do not account for the
consumption of RAM, disks, NICs, and other components,
which can lead to underestimates of total energy use [34].

In the context of software deployment, it is imperative to
meticulously measure two critical metrics: the power
consumption of services and the load on servers. In
operational mode, the carbon footprint (CO₂-equivalent) and
energy consumption in kWh per unit of workflow, such as per
request or transaction, are frequently utilized. As widely
acknowledged in the academic community, prevailing green
infrastructure metrics, such as Power Usage Effectiveness
(PUE), Data Center Infrastructure Efficiency (DCiE), and
Carbon Usage Effectiveness (CUE), focus on data centers.
However, these metrics do not account for software aspects or
load fluctuations at the application level [35].

New initiatives propose considering the efficiency
“inside” servers (SPUE) or calculating Software Carbon
Intensity (SCI), the normalized carbon footprint of software
per functional unit [36], [37], [38]. The trend toward

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2026 74
DOI:

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
III

, I
ss

ue
 1

, J
an

ua
ry

 2
0

26

10.5281/zenodo.17781203

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol XIII, Issue 1, January - June 2026.

standardization of SCI in ISO 14064/21031 reflects
recognition of the need for software-level metrics [39].

 The SCI can be calculated using the following formula:

 SCI = (E × I + M) / R ()

where E is the energy consumed by the software, I is the
carbon intensity, M is the carbon footprint associated with
hardware production, and R is the functional unit (e.g., number
of users or API requests).

A limitation of the SCI metric is the difficulty of accurately
measuring the value of M and defining a relevant functional
unit R for complex systems, as previously outlined.

T. Simon et al. emphasize that their evaluation model
distributes the overall impact between the “development” and
“use” phases and demonstrate that the optimization of just one
phase can result in a shift of the burden to the other phase [40].
In their example, the significance of the impact of the
development phase was given greater weight, despite the focus
traditionally being on operations. It is imperative to recognize
that the evaluation of any metric at a specific stage of the
SDLC is crucial. As Kruglov and Succi have highlighted, a
comprehensive assessment of a project's performance and
environmental impact can only be achieved through the
integration of measurements across all developmental stages
[33].

A considerable number of methodologies have been
demonstrated to result in substantial emission reductions;
however, it is crucial to acknowledge that these outcomes are
frequently accompanied by trade-offs. For instance, Hanafy et
al. demonstrate that as carbon savings increase, task delays
and costs also rise due to idling reserves. The authors observe
that their algorithms achieve a twofold increase in carbon
savings for every percentage point increase in cost,
concomitantly reducing the additional delay by 26% [7]. In
other words, the consistent reduction in energy demands
frequently necessitates the allocation of resources and
additional time, thereby constraining implementation in
critical systems.

The efficacy of such estimation and control methods is
constrained by assumptions regarding the availability of data
on load dynamics and energy sources. Algorithms frequently
presuppose precise prediction of network carbon intensity and
task duration. In the event of such data being inaccurate, the
decisions made may be suboptimal. The issue of delayed task
execution is also pertinent. It is noteworthy that not all studies
account for network delay in geographic migration, although
the issue is addressed in CASPER [10].

Another critical direction involves the automation of
sustainability evaluation within development workflows.
Upcoming tools seek to provide real-time energy feedback to
developers by integrating estimators and profilers directly into
IDEs and version control systems. For example, plug-ins can
highlight energy hotspots in code as developers write it,
allowing for just-in-time greenness corrections. While still in
the early stages, such tooling has the potential to transform
sustainability from a late-stage consideration to a core part of
the coding process.

Additionally, recent work explores how AI-assisted
refactoring tools might recommend low-energy alternatives
for common patterns or inefficient loops [41]. These

innovations reflect the increasing alignment between green
software engineering and developer productivity ecosystems.
Cross-field research is beginning to explore the psychological
and behavioral factors that influence how developers respond
to energy metrics, suggesting that future tools must be not only
accurate but also actionable and motivating to drive change in
software design practices.

Nevertheless, the identified works form the foundations of
green software engineering approaches, indicating directions
for further research, integrating metrics throughout the SDLC,
automating code greenness control, and considering economic
factors in resource scheduling.

Another rising aspect of energy efficiency in the SDLC is
the integration of sustainability considerations into software
architecture and design patterns. Research has shown that
architectural choices, such as the adoption of microservices
versus monolithic structures, can have a significant impact on
energy consumption [19]. For example, microservice-based
systems may increase network traffic and idle time due to
container overhead and distributed communication, whereas
monolithic designs, while less scalable, can result in lower
baseline energy use under certain conditions. This highlights
the need for sustainability-aware architecture trade-off
analysis, where energy implications are considered alongside
maintainability, performance, and scalability.

Similarly, the choice of programming language and
runtime environment has been scrutinized in recent studies
[42], [43], [44]. For instance, compiled languages such as C++
or Rust typically produce more energy-efficient executables
than interpreted languages like Python or JavaScript, though
the development speed and ecosystem support may differ.
Benchmarks across common workloads (e.g., compression,
parsing, web serving) confirm that language-level decisions
are not trivial in the context of energy use. The growing
interest in domain-specific languages (DSLs) for energy-
constrained environments (such as IoT and edge computing)
further exemplifies this direction, suggesting the co-evolution
of tools, languages, and sustainable practices. The field is also
beginning to explore the long-term effects of software bloat
and feature creep on sustainability.

As software systems accumulate features, dependencies,
and technical debt, they tend to grow in size and complexity,
often requiring more resources to run, update, and maintain.
This phenomenon, known as “code rot” or “software obesity”,
introduces persistent overheads, especially when running on
cloud infrastructure where idle resources still consume
electricity [45]. Lean software engineering principles are
being revisited through a sustainability lens, encouraging
minimalist, modular, and refactorable designs as mechanisms
for long-term energy savings.

TABLE III. ENERGY OPTIMIZATION APPROACHES

SDLC Phase
Evaluation Framework

Optimization
Approach Methods Effectiveness

Planning High-level
energy goals

Green
requirements,
sustainability

guidelines

Medium

Analysis

Evaluate
potential
energy
impact

Software
modeling,

architectural trade-
offs

Medium

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2026 75
DOI:

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
III

, I
ss

ue
 1

, J
an

ua
ry

 2
0

26

10.5281/zenodo.17781203

M. Piastou,
“Green software development using carbon-aware scheduling techniques

and energy efficiency metrics throughout the SDLC”,
Latin-American Journal of Computing (LAJC), vol. 13, no. 1, 2026.

SDLC Phase
Evaluation Framework

Optimization
Approach Methods Effectiveness

Design
Energy-
aware

architecture

Component
selection,

modularity, low-
power design

patterns

Medium-
High

Implementation
Efficient

code
development

Energy-efficient
algorithms, linters,

static analysis

Medium-
High

Testing

Energy
regression

and
monitoring

RAPL, Intel
Power Gadget,

automated energy
tests

Medium

Maintenance
Reduce long-
term energy

cost

Refactoring, code
bloat reduction,

continuous
monitoring

Low-
Medium

 Optimizing reuse without bloating systems is thus an
active area of exploration. Finally, education and cultural
change within the software engineering profession are
becoming central to the green software movement. Studies
have shown that many developers remain unaware of the
energy implications of their design and implementation
decisions, or lack the tools and incentives to prioritize
sustainability [46], [47]. This has spurred the creation of
educational materials, guidelines (e.g., the Green Software
Foundation’s principles), and even university courses on
sustainable computing.

Bridging the knowledge gap between energy modeling
experts and everyday developers is crucial if green practices
are to become mainstream rather than niche. As sustainability
becomes a shared responsibility, fostering a culture that values
efficiency, transparency, and accountability will be just as
important as advancing technical solutions.

IV. CONCLUSION
The review demonstrates that carbon-aware scheduling

and energy efficiency metrics are active research areas for
green software development from 2020 onwards. It is vital to
employ critical scheduling strategies, including temporal
shifting of tasks, geographic and price-based load balancing,
and dynamic resource scaling. Experimental evidence shows
that these techniques can reduce the carbon footprint of
applications and computational processes by tens of percent.
However, many of these methods remain at the prototype
stage, and their deployment often involves trade-offs between
emissions, performance, and cost.

A key finding is the necessity for end-to-end measurement
across all stages of the SDLC. Current metrics inadequately
capture software-level energy efficiency or account for
application performance. The Software Carbon Intensity
(SCI) metric, while promising, remains immature and requires
rigorous validation. Future work should focus on developing
standardized, cross-platform metrics that integrate energy,
carbon, and performance indicators, enabling fair comparison
and benchmarking of software systems.

Key strategies to promote sustainable software
development include:

1) Integration of energy metrics into development
workflows: Incorporate energy profiling, SCI estimators, and
carbon-aware alerts directly into IDEs, CI/CD pipelines, and
testing frameworks to enable developers to optimize energy
use as they code.

2) Adoption of carbon-aware scheduling in cloud
environments: Encourage cloud providers to expose real-time
carbon intensity data and pricing signals, enabling
applications to dynamically shift workloads across time and
geography.

3) Standardization and benchmarking: Establish open
datasets for carbon intensity, shared benchmarks for energy
efficiency, and guidelines for SCI reporting to foster
transparency and comparability.

4) Education and cultural change: Train software
engineers on sustainable design patterns, energy-efficient
programming practices, and the environmental implications
of software architecture choices.

5) Policy and regulatory alignment: Encourage
policymakers to incentivize sustainable software
development through certifications, disclosure requirements,
or carbon-aware procurement policies.

6) Interdisciplinary collaboration: Promote partnerships
among academia, industry, and environmental science to co-
develop frameworks that balance performance, cost, and
sustainability in real-world software systems.

Looking ahead, the successful realization of green
software systems will require a synergy of technical,
organizational, and policy innovations. Scalable, interoperable
infrastructures that operationalize sustainability without
compromising functionality or accessibility must become the
norm. As digital services underpin critical societal functions,
software energy efficiency is no longer a niche concern and
has become a crucial enabler of climate action. Only through
coordinated efforts across stakeholders can the software
industry make a meaningful contribution to global emissions
reduction goals.

REFERENCES
[1] J. C. T. Bieser and S. Peters, “A review of assessments of the

greenhouse gas footprint of digital devices,” Telecommun. Policy,
vol. 47, no. 5, 2023.

[2] World Bank / ITU, Measuring the Emissions & Energy Footprint of the
ICT Sector, World Bank, 2024.

[3] W. Wysocki, I. Miciuła, and P. Plecka, “Methods of Improving
Software Energy Efficiency: A Systematic Literature Review and the
Current State of Applied Methods in Practice,” Electronics, vol. 14, no.
7, p. 1331, 2025, doi: 10.3390/electronics14071331.

[4] T. Anderson, A. Belay, M. Chowdhury, A. Cidon, and I. Zhang,
“Treehouse: A Case For Carbon-Aware Datacenter Software,” in Proc.
HotCarbon ’22, 2022.

[5] Y. G. Kim, U. Gupta, A. McCrabb, Y. Son, V. Bertacco, D. Brooks,
and C.-J. Wu, “GreenScale: Carbon-Aware Systems for Edge
Computing,” arXiv, Apr. 2023, doi: 10.48550/arXiv.2304.00404.

[6] S. McGuire, E. Shultz, B. Ayoola, and P. Ralph, “Sustainability is
Stratified: Toward a Better Theory of Sustainable Software
Engineering,” in Proc. ICSE ’23, May 2023, pp. 1996–2008, doi:
10.1109/ICSE48619.2023.00169.

[7] W. A. Hanafy, Q. Liang, N. Bashir, A. Souza, D. Irwin, and P. Shenoy,
“Going Green for Less Green: Optimizing the Cost of Reducing Cloud
Carbon Emissions,” in Proceedings of the 29th ACM International

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2026 76
DOI:

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
III

, I
ss

ue
 1

, J
an

ua
ry

 2
0

26

10.5281/zenodo.17781203

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol XIII, Issue 1, January - June 2026.

Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’24), La Jolla, CA, USA, Apr. 2024,
pp. 479–496.

[8] P. Thamm, “Strategies to Measure Energy Consumption Using RAPL
During Workflow Execution on Commodity Clusters,” arXiv,
May 2025, doi: 10.48550/arXiv.2505.09375.

[9] G. Raffin and D. Trystram, “Dissecting the software-based
measurement of CPU energy consumption: a comparative analysis,”
arXiv, Jan. 2024, doi: 10.48550/arXiv.2401.15985.

[10] A. Souza, S. Jasoria, B. Chakrabarty, A. Bridgwater, A. Lundberg,
F. Skogh, A. Ali-Eldin, D. Irwin, and P. Shenoy, “CASPER:
Carbon-Aware Scheduling and Provisioning for Distributed Web
Services,” in Proc. 14th Int’l Green & Sustainable Computing Conf.
(IGSC ’23), Toronto, ON, Canada, Oct. 2023, pp. 67–73,
doi: 10.1145/3634769.3634812.

[11] A. Lechowicz, R. Shenoy, N. Bashir, M. Hajiesmaili, A. Wierman, and
C. Delimitrou, “Carbon- and Precedence-Aware Scheduling for Data
Processing Clusters,” CoRR, vol. abs/2502.09717, Feb. 2025,
doi: 10.48550/arXiv.2502.09717.

[12] J. Bader, J. Irion, J. Kappel, J. Witzke, N. Fomin, D. Sherifi, and
O. Kao, “Learning Process Energy Profiles from Node-Level Power
Data,” arXiv preprint arXiv:2511.13155, Nov. 2025.

[13] M. Raeisi-Varzaneh, O. Dakkak, Y. Fazea, and M. G. Kaosar,
“Advanced cost-aware Max–Min workflow tasks allocation and
scheduling in cloud computing systems,” Cluster Computing, vol. 27,
pp. 13,407–13,419, Dec. 2024.

[14] X. Sun, Z. Wang, Y. Wu, H. Che, and H. Jiang, “A price-aware
congestion control protocol for cloud services,” J. Cloud Comput.,
vol. 10, no. 1, Art. 55, Nov. 2021.

[15] S. Tuli, G. Casale, and N. R. Jennings, “MetaNet: Automated dynamic
selection of scheduling policies in cloud environments,” arXiv preprint
arXiv:2205.10642, May 2022.

[16] S. G. Ahmad, T. Iqbal, and E. U. Munir, “Cost optimization in cloud
environment based on task deadline,” J. Cloud Comput., vol. 12, Art. 9,
Jan. 2023.

[17] Z. Miao, L. Liu, H. Nan, W. Li, X. Pan, X. Yang, M. Yu, H. Chen, and
Y. Zhao, “Energy and carbon-aware distributed machine learning tasks
scheduling scheme for the multi-renewable energy-based edge-cloud
continuum,” Science and Technology for Energy Transition, vol. 79,
Article 82, 2024, doi: 10.2516/stet/2024076.

[18] W. A. Hanafy, L. Wu, D. Irwin, and P. Shenoy, “CarbonFlex: Enabling
Carbon-aware Provisioning and Scheduling for Cloud Clusters,” CoRR,
vol. abs/2505.18357, May 2025.

[19] X. Xiao, C. Gao, and J. Bogner, “On the Effectiveness of Microservices
Tactics and Patterns to Reduce Energy Consumption: An Experimental
Study on Trade-Offs,” in Proc. 22nd Int’l Conf. on Software
Architecture (ICSA ’25), Odense, Denmark, Apr. 2025, pp. 164–175,
doi: 10.1109/ICSA65012.2025.00025.

[20] O. Poy, M. Á. Moraga, F. Garcia, and C. Calero, “Impact on energy
consumption of design patterns, code smells and refactoring
techniques: A systematic mapping study,” J. Syst. Softw., vol. 222, no.
15, p. 112303, Dec. 2024, doi: 10.1016/j.jss.2024.112303.

[21] X. Xiao, “Architectural Tactics to Improve the Environmental
Sustainability of Microservices: A Rapid Review,” CoRR,
vol. abs/2407.16706, July 2024.

[22] E. Breukelman, S. Hall, G. Belgioioso, and F. Dörfler, “Carbon-Aware
Computing in a Network of Data Centers: A Hierarchical
Game-Theoretic Approach,” in Proc. 2024 European Control
Conference (ECC), Stockholm, Sweden, Jun. 25–28, 2024, pp. 798–
803, doi: 10.23919/ECC64448.2024.10591261.

[23] N. Asadov, V. C. Coroamă, M. Franzil, S. Galantino, and M.
Finkbeiner, “Carbon-Aware Spatio-Temporal Workload Shifting in
Edge–Cloud Environments: A Review and Novel Algorithm,”
Sustainability, vol. 17, no. 14, p. 6433, Jul. 2025,
doi: 10.3390/su17146433.

[24] Y. Guo, A. Tomlinson, R. Su, and G. Porter, “The Effect of the
Network in Cutting Carbon for Geo-shifted Workloads,” CoRR,
vol. abs/2504.14022, Apr. 2025.

[25] N. L. Woodruff, D. Schall, M. F. P. O’Boyle, and C. Woodruff, “When
Does Saving Power Save the Planet?,” in Proc. HotCarbon ’23,
Jul. 2023, pp. 1–6, doi: 10.1145/3604930.3605719.

[26] P. Wiesner, M. Steinke, H. Nickel, Y. Kitana, and O. Kao,
“Software-in-the-Loop Simulation for Developing and Testing

Carbon-Aware Applications,” Software: Practice and Experience,
vol. 53, no. 12, pp. 2362–2376, 2023, doi: 10.1002/spe.3275.

[27] F. Hussin, S. A. N. Md Rahim, N. S. M. Hatta, M. K. Aroua, and S. A.
Mazari, “A systematic review of machine learning approaches in
carbon capture applications,” Journal of CO₂ Utilization, vol. 71,
Art. 102474, May 2023, doi: 10.1016/j.jcou.2023.102474.

[28] J. Mancebo, C. Calero, and F. García, “Does maintainability relate to
the energy consumption of software? A case study,” Software Qual. J.,
vol. 29, no. 1, pp. 101–127, Jan. 2021,
doi: 10.1007/s11219-020-09536-9.

[29] H. M. Alvi, H. Majeed, H. M. Mujtaba, and M. O. Beg, “MLEE:
Method level energy estimation — A machine learning approach,”
Sustain. Comput. Inform. Syst., vol. 31, p. 100594, 2021,
doi: 10.1016/j.suscom.2021.100594.

[30] K. Chan-Jong-Chu, T. Islam, M. M. Exposito, S. Sheombar,
C. Valladares, O. Philippot, E. M. Grua, and I. Malavolta,
“Investigating the Correlation between Performance Scores and Energy
Consumption of Mobile Web Apps,” in Proc. 24th Evaluation &
Assessment in Software Engineering (EASE ’20), Trondheim, Norway,
Apr. 2020, pp. 190–199, doi: 10.1145/3383219.3383239.

[31] N. Schmitt, J. Bucek, J. Beckett, A. Cragin, K.-D. Lange, and S.
Kounev, “Performance, power, and energy-efficiency impact analysis
of compiler optimizations on the SPEC CPU 2017 benchmark suite,”
in Proc. 2020 IEEE/ACM 13th Int. Conf. on Utility and Cloud
Computing (UCC), 2020, pp. 292–301, doi:
10.1109/UCC48980.2020.00047.

[32] B. Prieto, J. J. Escobar, J. C. Gómez-López, A. F. Díaz, and T. Lampert,
“Energy Efficiency of Personal Computers: A Comparative Analysis,”
Sustainability, vol. 14, no. 19, Art. 12829, Oct. 2022,
doi: 10.3390/su141912829.

[33] A. Kruglov, G. Succi, and Z. Kholmatova, “Metrics of Sustainability
and Energy Efficiency of Software Products and Process,” in
Developing Sustainable and Energy-Efficient Software Systems,
SpringerBriefs in Computer Science, Cham, Switzerland, 2023, pp. 19–
26, doi: 10.1007/978-3-031-11658-2_2.

[34] Z. Zhang, S. Liang, F. Yao, and X. Gao, “Red Alert for Power Leakage:
Exploiting Intel RAPL-Induced Side Channels,” in Proc. 2021 ACM
Asia Conference on Computer and Communications Security (ASIA
CCS ’21), Hong Kong, June 2021, pp. 162–175,
doi: 10.1145/3433210.3437517.

[35] A. Safari, H. Sorouri, A. Rahimi, and A. Oshnoei, “A Systematic
Review of Energy Efficiency Metrics for Optimizing Cloud Data
Center Operations and Management,” Electronics, vol. 14, no. 11,
Art. 2214, May 2025, doi: 10.3390/electronics14112214.

[36] Green Software Foundation. “Software Carbon Intensity (SCI)
Specification v1.0,” Green Software Foundation, 2021. [Online].
Available: https://sci.greensoftware.foundation/

[37] UBS, “Baselining Software Carbon Emissions: UBS Use Case,” Green
Software Foundation, 2023. [Online]. Available:
https://greensoftware.foundation/articles/baselining-software-carbon-
emissions-ubs-use-case/

[38] A. Schmidt, G. Stock, R. Ohs, L. Gerhorst, B. Herzog, and T. Hönig,
“carbond: An Operating-System Daemon for Carbon Awareness,” in
Proc. 2nd Workshop on Sustainable Computer Systems, HotCarbon
’23, Boston, MA, USA, 2023, pp. 1-10,
doi: 10.1145/3604930.3605707.

[39] ISO/IEC 21031:2024. Information technology - Software carbon
intensity - Measurement and reporting framework, International
Organization for Standardization, Geneva, Switzerland, 2024. [Online].
Available: https://www.iso.org/standard/86612.html/

[40] T. Simon, P. Rust, R. Rouvoy, and J. Penhoat, “Uncovering the
environmental impact of software life cycle,” in Proc. 2023 IEEE Int.
Conf. on ICT for Sustainability (ICT4S ’23), 2023, pp. 176–187, doi:
10.1109/ICT4S58814.2023.00026.

[41] A. Imran, T. Kosar, J. Zola, and M. F. Bulut, “Towards Sustainable
Cloud Software Systems through Energy-Aware Code Smell
Refactoring,” in Proc. 2024 IEEE 17th International Conference on
Cloud Computing (CLOUD ’24), Shenzhen, China, 2024, pp. 223–234,
doi: 10.1109/CLOUD62652.2024.00034.

[42] N. Marini, L. Pampaloni, F. Di Martino, R. Verdecchia, and E. Vicario,
“Green AI: Which Programming Language Consumes the Most?,”
arXiv, 2024.

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2026 77
DOI:

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
III

, I
ss

ue
 1

, J
an

ua
ry

 2
0

26

10.5281/zenodo.17781203

M. Piastou,
“Green software development using carbon-aware scheduling techniques

and energy efficiency metrics throughout the SDLC”,
Latin-American Journal of Computing (LAJC), vol. 13, no. 1, 2026.

[43] N. van Kempen, H.-J. Kwon, D. T. Nguyen, and E. D. Berger, “It’s Not

Easy Being Green: On the Energy Efficiency of Programming
Languages,” arXiv, 2024.

[44] N. Fatema Reya, A. Ahmed, T. Zaman, and Md. M. Islam, “GreenPy:
Evaluating Application-Level Energy Efficiency in Python for Green
Computing,” Annals of Emerging Technologies in Computing, vol. 3,
2023, pp. 92–110, doi:10.33166/aetic.2023.03.005.

[45] M. Couto, D. Maia, J. Saraiva, and R. Pereira, “On Energy Debt:
Managing Consumption on Evolving Software,” in Proc. 3rd

IEEE/ACM Int. Conf. on Technical Debt (TechDebt ’20), Seoul,
Republic of Korea, June 2020, pp. 62–66,
doi: 10.1145/3387906.3388628.

[46] S. U. Lee, N. Fernando, K. Lee & J.-G. Schneider, “A Survey of Energy
Concerns for Software Engineering,” Journal of Systems and Software,
vol. 210, article no. 111944, 2024, doi: 10.1016/j.jss.2023.111944.

[47] H. Noman, M. Freed, and S. Jain, “An Exploratory Study of Software
Sustainability at Early Stages,” Sustainability, vol. 14, no. 14, p. 8596,
Jul. 2022, doi: 10.3390/su14148596

ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2026

78

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
III

, I
ss

ue
 1

, J
an

ua
ry

 2
0

26 AUTHORS

Mikita Piastou is a senior full-stack software engineer with over eight
years of experience in the technology industry, specializing in both data
and software development. He holds a Master’s degree in Computer
Science from the University of West Georgia and has contributed to
several publications on artificial intelligence, software development,
and broader computer science topics. Throughout his career, Mikita
has designed, implemented, and maintained highly scalable and
reliable software solutions, integrated cutting-edge AI technologies,
and optimized complex data systems for various organizations across
multiple sectors. He is also a member of IEEE, actively engaging with
the professional community. Beyond his technical expertise, he serves
as a judge in hackathons and provides guidance to fellow developers.
Outside of work, he enjoys keeping up with the latest technology
trends, experimenting with new programming frameworks, working
on creative side projects that contribute to the advancement of
society, and exploring entrepreneurship through startup competitions
and collaborative innovation ventures.

Mikita Piastou

M
. P

ia
st

o
u,

“G

re
en

 s
o

ft
w

ar
e

d
ev

el
o

p
m

en
t

us
in

g
 c

ar
b

o
n-

aw
ar

e
sc

he
d

ul
in

g
 t

ec
hn

iq
ue

s
an

d
 e

ne
rg

y
effi

ci
en

cy
 m

et
ri

cs
 t

hr
o

ug
ho

ut
 t

he
 S

D
LC

”,
La

ti
n-

A
m

er
ic

an
 J

o
ur

na
l o

f
C

o
m

p
ut

in
g

 (
L

A
JC

),
 v

o
l.

13
, n

o
. 1

, 2
0

26
.

