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Abstract— This research focused on evaluating the manual
classification of land cover using Sentinel-2 imagery. Supervised
algorithms were applied to validate and improve this process. Three
algorithms were selected based on their computational efficiency:
K-Nearest Neighbors (KNN), Random Forest (RF), and Support
Vector Machine (SVM). The results show that KNN achieved
optimal performance, demonstrating a solid balance between
accuracy, F1 score, and execution time compared to RF. RF, for its
part, obtained greater accuracy, indicating its superior ability to
correctly identify classes; however, it requires more computational
resources. SVM exhibited lower performance in the evaluated
metrics but achieved a shorter execution time. It was identified as
the algorithm with the greatest limitations for separating classes
within this dataset derived from the different study areas. Overall,
the comparison confirmed that the manual classifications developed
in QGIS are supported and validated by the application of these
supervised methods. The use of such algorithms contributes to
improving the accuracy, consistency, and efficiency of geospatial
classification tasks.

Keywords— Remote sensing, Machine learning, Infrared
imaging, Data science

I. INTRODUCTION

Analyzing satellite images offers benefits such as the ability
to visualize spatiotemporal patterns of the Earth, the
environment, and climate change. This type of study enables
the monitoring and understanding of these processes, leading
to greater precision [1][2],[3]. Another advantage of studying
images, such as multispectral images, is that they provide
more information about the Earth's surface and vegetation.
Currently, the Sentinel-2 remote sensor of the European
Space Agency (ESA) provides the most detailed images of
the Earth from space [4].

As noted in [5], the diversity of missions carried out by
Sentinel-2 within the Copernicus program is highly relevant
to Earth observation. Its advanced design and capabilities
have driven significant progress in land cover monitoring,
precision agriculture, natural disaster management, and
ecosystem studies. Sentinel-2 has two satellites (2A and 2B)
equipped with the Multispectral Instrument (MSI), which
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captures images in thirteen spectral bands ranging from
visible to shortwave infrared. Its spatial resolution ranges
from ten to sixty meters, and its swath width is 290 km
[6],[7].

The characteristics of the remote sensor allow for continuous
and highly detailed monitoring of study areas. However,
using  traditional  classification = methods  presents
complications in terms of reproducibility and efficiency,
especially when applied to heterogeneous areas [8].
Furthermore, the spectral and spatial benefits provided by
Sentinel-2 generate a large volume of data that require
processing with advanced methods such as machine learning
or image processing techniques. In this context, supervised
algorithms have broad and optimal potential for classifying
information from satellite images. Some models used are
Support Vector Machines (SVM), Random Forests (RF), and
K-Nearest Neighbors (KNN). These algorithms can process
spectral data and identify patterns in images [9],[10],[11].
These algorithms perform well; however, their accuracy
varies depending on environmental conditions and the land
cover being studied.

Remote sensing and machine learning combined make efforts
to transform this type of data into information for decision-
making on environmental and territorial issues [12],[13].
Currently, the literature explores the processes, development,
and application of supervised algorithms in satellite image
classification. A widely cited study is that of [14], who
conducted a thorough analysis of the application of RF in
satellite image processing, demonstrating its optimal capacity
for processing large volumes of data and its robustness
against overfitting.

This background highlights the relevance of employing
algorithms such as RF, using satellite images from Sentinel-
2. To complement this information, [15] conducted a study
on the application process of remote sensing techniques,
analyzing six commonly used algorithms, such as SVM and
RF. They conclude that these types of algorithms offer the
capacity to solve high-dimensional problems. This
background reinforces the idea that comparing methods is

14


https://orcid.org/0009-0000-9453-2582
https://orcid.org/0000-0002-6837-9227
https://orcid.org/0000-0002-9156-5669
https://orcid.org/0000-0003-0733-8453

Z. Cervantes, E. Morales, C. Lopez, and 1. Reyes,

“Evaluating the accuracy of manual classification in satellite images using supervised algorithms”,
Latin-American Journal of Computing (LAJC), vol. 13, no. 1, 2026.

beneficial for verifying operational performance in real
geospatial scenarios, as proposed in this research conducted
in Veracruz, Mexico. Based on the above, the objective of
this research is to identify which supervised machine learning
algorithms achieve the best accuracy in classifying areas in
satellite imagery. This involves evaluating the classification
of Sentinel-2 satellite images in various geospatial scenarios
in Veracruz, Mexico.

The analysis compares the results of manual classification
with those obtained using SVM, RF, and KNN in three
distinct regions: the city of Xalapa, Pico de Orizaba, and
Cofre de Perote. These areas were selected for their unique
environmental characteristics, including urban centers,
bodies of water, diverse vegetation types, and high-altitude
snow-capped mountains, allowing for a direct evaluation of
the algorithms' performance under different topographic and
ecological conditions.

II. PROBLEM STATEMENT

One of the main challenges in satellite image analysis is
the accurate classification of land cover, particularly in
heterogeneous areas characterized by varying vegetation
density and expanding urban zones. Examples of such
environments include Xalapa, Cofre de Perote, and Pico de
Orizaba in the state of Veracruz, Mexico.

Traditional (or manual) classification methods often
present obstacles when attempting to differentiate spectrally
similar classes, such as dense and sparse vegetation, urban
areas, or arid zones, especially when using medium-resolution
imagery. These limitations can compromise the reliability of
studies focused on land-use monitoring or urban planning.
Therefore, it is essential to conduct post-hoc evaluations using
supervised algorithms to assess the accuracy of classifications
obtained through manual methods (e.g., manual class
selection in QGIS). Supervised algorithms help determine
whether classes were assigned correctly, thus strengthening
the results through greater accuracy and better generalization
across complex landscapes.

III. RELATED WORKS

In this study, the authors [16] identified and classified
greenhouses in the Anamur region of Mersin, Turkey, using
Sentinel-2 MSI medium-resolution and SPOT-7 high-
resolution images. This research focused on object-based
image analysis (OBIA) using KNN, RF, and SVM algorithms
to evaluate which of the different methods and sensors is most
effective for greenhouse classification. Multispectral images
taken on August 2, 2018, were used, along with field data and
visual validation. The methodology consisted of several
stages, including atmospheric correction for images with
cloud cover, segmentation of the Sentinel-2 MSI images
using the ESP-2 tool, extraction of spectral and textural
features, as well as the NDVI and NDWI indices, and finally,
the application and comparison of the algorithms. The results
indicate that the most accurate methods were KNN and RF
with SPOT-7 images, achieving an overall accuracy of
91.43% and a Kappa coefficient of 0.88. On the other hand,
KNN was the best classified greenhouses in Sentinel-2 MSI
images, as it had the highest accuracy (88.38%) and a Kappa
coefficient of 0.83. In conclusion, both sensors demonstrated
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good effectiveness for greenhouse classification, despite
having different resolutions. Furthermore, KNN and RF
proved to be the most accurate methods.

In another study [17], the performance of Random Forest
(RF), Support Vector Machine (SVM), and a combination of
both algorithms, known as Stack, was evaluated for
classifying satellite images in rural and urban areas of
Bangladesh, specifically in the Bhola and Dhaka regions.
Images from Landsat-8, Sentinel-2, and Planet satellites were
used to determine which sensor and algorithm combination
offers the greatest accuracy for detecting land use and land
cover changes (LULC) in areas considered fragmented.
Geometric and atmospheric corrections were applied, a
training dataset was created for each region, and the objects
were classified using RStudio software. This classification
yielded six classes for Bhola: water bodies, tree vegetation,
rainfed agriculture, wetland agriculture, fallow land, and
urbanized or swampy areas. In Dhaka, only five landform
classes were identified: water bodies, tree cover, grassland or
agricultural land, urbanized areas, and landfills. The analysis
showed that the Sentinel-2 sensor and SVM were the most
accurate and highest-performing in both study areas, with an
accuracy of 0.969 in Bhola and 0.983 in Dhaka, and Kappa
coefficients 0f 0.948 and 0.968, respectively. However, SVM
performed better in classifying water and vegetation-related
categories, while RF and Stack were more effective at
distinguishing urbanized areas and landfills. This study
concluded that Sentinel-2 is well-suited for classifying
different areas at a small scale and that SVM offers better
results when the dataset is limited.

This study [18] compared Support Vector Machine (SVM),
Random Forest (RF), and Classification and Regression Tree
(CART) algorithms with the Google Earth Engine (GEE)
platform to map and analyze land cover changes over Lake
Urmian in Iran from 2000 to 2020. A total of 55 satellite
images from Landsat 5, 7, and 8 were used over time.
Additionally, 20,000 training points were obtained from
previous field studies and Google Earth maps, while the
control set consisted of 6,000 ground points for validation.
Before processing, the images were filtered to detect cloud
cover, as this could lead to misclassification. Subsequently,
the different algorithms were applied and evaluated using the
confusion matrix, the Kappa coefficient, and the global
accuracy metric. These algorithms were also subjected to a
spatial uncertainty analysis using Dempster-Shafer theory
(DST) with the Idrisi program. The results of this research
showed that the classified maps detected a reduction in the
lake's surface area of approximately 1000 to 1400 hectares,
and an increase in agricultural and urban areas. Furthermore,
SVM proved to be the most efficient algorithm for multi-
temporal classification with an accuracy of 92-95%,
followed by RF (82—-87%) and CART (63-70%).

This research evaluated and compared the Random Forest
(RF), K-Nearest Neighbors (KNN), and Gaussian Mixture
Model (GMM) algorithms for generating urban land cover
maps of Quezon City in the Philippines [19]. The aim was to
determine which algorithms are the most accurate in
classifying urban and non-urbanized areas, as well as to
monitor urban sprawl in the city. For this purpose, pre-
corrected Sentinel-2A satellite images downloaded on July 1,
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2021, were used. A training set was created with 70% of the
images manually labeled and 30% for validation. Spectral
bands with a resolution of 10 and 20 meters were also used.
Image processing was performed using QGIS software with
the Semi-Automatic Classification (SCP) and Dzetsaka
plugins. Three machine learning algorithms were applied and
evaluated using confusion matrices, producer accuracy, user
accuracy, and overall accuracy. The results indicated that the
algorithms achieved high classification accuracy, with RF
showing the highest at 99.32%, followed by KNN at 98.05%,
and GMM at 97.17%. However, execution times varied: RF
took 7 minutes, KNN approximately 2.5 minutes, and GMM
less than 5 seconds. In conclusion, the applied methods
proved effective for classifying urban areas, with RF
exhibiting the highest accuracy, while GMM stood out for its
faster data processing.

The potential of satellite imagery from Sentinel-1 with its
SAR sensor, Sentinel-2 in multispectral mode, and the
combination of both sensors was also studied using Linear
Regression (LR), Classification and Regression Trees
(CART), and Random Forest (RF) algorithms, along with
airborne LiDAR data. This was done to identify which
datasets best model canopy height in the Atlantic Forest of
Parand, Brazil [20]. Additionally, raw, ind, and all features
were extracted from the satellite combinations. These
methods were evaluated using Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), and R? metrics with
training and test data samples, using R software. The findings
showed that Sentinel-2 and the sensor combination are the
most suitable for modeling canopy height. While Random
Forests performed better than the other algorithms, achieving
an RMSE of 4.92 m and an R? of 0.58 using only Sentinel-1
data, and an RMSE of 4.86 m and an R? of 0.60 using
Sentinel-2 data, Sentinel-2 data demonstrates good accuracy
in estimating canopy height.

In this study, the performance of Support Vector Machine
(SVM), Decision Tree (DT), Random Forest (RF), K-Nearest
Neighbors (KNN), and Naive Bayes was compared using
high-resolution satellite imagery from Cartosat-2E, Cartosat-
3, and LISS-4 over the Jaipur area of India [21]. The objective
of this study was to compare two types of classification
techniques, object-based and pixel-based—to determine
which method offers better results in land use and land cover
(LULC) classification. The data used in the study were
multispectral and orthorectified images downloaded from the
National Remote Sensing Agency (NRSC), which were
classified using QGIS and the Orfeo Toolbox. The images
also underwent a segmentation process, separability indices
were calculated between the different classes, and the
algorithms were compared using accuracy, recovery, Fl
score, and Kappa coefficient. According to the results, for the
object-based technique, the algorithm with the highest
accuracy was Decision Trees with a Kappa coefficient of
0.90. In contrast, with the pixel-based method, both KNN and
SVM performed best, especially with images related to the
Cartosat-2E and Cartosat-3 sensors.

Finally, for this research, spectral indices (NDWI, MNDWI,
AWEI SH, AWEI NSH, AWEI BOTH) and machine
learning algorithms (SVM, RT, MLC, KNN) were evaluated
to detect water surfaces in Sentinel-2 images [22]. The aim
was to determine which method offers the best classification
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accuracy using a pixel-based approach, as well as to identify
image characteristics that could cause erroneous
classification results. For this purpose, images from the Red
River, Sylvia Grinnell, Riviére-Rouge, and Fraser Rivers—
areas with rivers located in Canada—were used. High-
resolution images (PLEIADES, WorldView-2, TripleSat, and
KOMPSAT-3) were also used as a validation dataset. The
images were corrected for cloud cover issues, and spectral
indices were obtained. The threshold values for the
algorithms were manually adjusted and evaluated using the
Critical Success Index (CSI) and the Root Mean Square Error
(RMSE) to estimate river width. The results showed that the
AWEI NSH index and the SVM algorithm performed best
for classification across all study areas, demonstrating greater
consistency and accuracy. Furthermore, the study revealed
that features increasing the likelihood of misclassification are
most closely related to environmental factors such as
vegetation, urban infrastructure, water turbidity, and shadows
cast by objects.

IV. METHODOLOGY

A methodological framework was designed to guide
the development of this research and to achieve the stated

objec- tive (Figure 1).
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Fig. 1: Methodological process for this research

A. Identification of the study area

For the selection of the study areas, regions with
diverse environmental scenarios—such as vegetation,
urban zones, water bodies, and barren land—were
considered in order to include a greater variety of
classes. Three regions within the state of Veracruz were
selected: Xalapa (urban area), Pico de Orizaba (protected
natural area), and Cofre de Per- ote (national park). This
environmental heterogeneity makes these areas ideal for
assessing the accuracy of land-cover classification
methods.

B. Satellite image

The images used in this study were obtained from
the Copernicus platform via the Sentinel-2 satellite. The
selected period, from February to April, was chosen to
ensure favorable weather conditions for satellite
observation characterized by lower precipitation and minimal
cloud coverthus guaranteeing higher image quality. It is
impor- tant to note that the input images were obtained in RGB
format.
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C. Analysis tools

For the initial process—manual classification of the image
classes—QGIS version 3.40.3 was used. This stage involved
area delimitation, user-assigned classifications, and the cre-
ation of a database containing pixels and their corresponding
classes. For the supervised classification algorithms, Python
was employed, as it allows efficient handling of large data
volumes.

D. Image processing

In this phase, the images were preprocessed to correct
atmospheric noise, cloud cover, and shadows. These
corrections were performed using QGIS. The objective of this
step was to optimize the accuracy of spectral identification. It
is worth noting that the true-color (RGB) images were
converted into false-color composites using the B0O8, B04, and
BO03 bands, as the BO8 band enhances vegetation, facilitating
classification in each image. Following this, spectral features
were obtained from the B2, B3, B4, B8, B11, and B12 bands,
chosen for their ability to distinguish land cover.

E. Manual classification of images

Manual classification was performed, in which the user
assigns classes based on predefined criteria image content,
identifying various types of land cover in each study area. A
total of six classes were defined: urban areas, water bodies,
dense vegetation, sparse vegetation, no vegetation, and snow.
Five classes were identified in Xalapa and Pico de Orizaba,
while six categories were present in Cofre de Perote. After
classification, a comma-delimited (CSV) file containing the
pixels of each image and their corresponding class was
exported.

F. Supervised algorithms

RF is a supervised algorithm that combines multiple
decision trees to generate a more robust model. Developed by
American statistician Leo Breiman in 2001, it is based on the
principle of bagging (bootstrap aggregation), where multiple
decision trees are built and trained with random subsets of data
and features. This approach reduces correlation between trees
and improves model extension. At each node, a random subset
of variables is selected to determine the optimal split,
increasing the diversity of the forest. Final predictions are
derived from the results of all trees. While each individual tree
represents a weak classifier, their combination results in a
robust, stable, and low-variance ensemble model [23], [24].

KNN is based on the principle that a new data point can be
classified or predicted by analyzing its k nearest neighbors
within the feature space. The algorithm's performance
depends heavily on the distance metric used and the
appropriate  selection of the hyperparameter k. In
classification, the class of a new data point is determined by
the average of its nearest neighbors, while in regression, the
predicted value corresponds to the average of the neighbors'
outputs. It is important to note that selecting an appropriate
value for k is crucial, as choosing a value that is too high can
increase the prediction error and negatively impact the model's
performance [25].
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SVM is used in classification and prediction. Its main
function is to find the optimal hyperplane that separates data
points of different classes with the maximum margin; that is,
the greatest possible distance between the hyperplane and the
nearest data points of each class, known as support vectors.
SVM combines the maximum margin principle, which
improves the model's generalizability, with the kernel method,
which allows the algorithm to handle nonlinearly separable
data by projecting it onto a higher-dimensional feature space
where linear separation becomes possible [26], [27].

G. Characteristics of the models and their process

This section describes how the classes used to generate the
classification were heterogeneously distributed, which
directly influenced the model performance. The category
with the most data was vegetation, followed by urban areas,
and then the remaining classes.

Hyperparameters:
e For RF, 200 trees were used.
e For KNN, k=5 and Euclidean distance were used.

e For the SVM, an RBF kernel with C=1.0 and
gamma=0.1 was used.
For all three methods, cross-validation was used to
strengthen the results; a k-fold = 5 was performed.
H. Metrics for the evaluation of algorithms

Confusion Matrix
Table I shows the characteristics of a confusion matrix.

TABLE I. Example of the confusion matrix

Prediction
Positive Negative
Observation Positive True Positive (TP) False Positive (FP)
Negative | False Negative (FN) | True Negative (TN)
Where:

« TP: the model correctly predicts a positive case.
« TN: the model correctly predicts a negative case.
« FP: the model predicts positive when it is negative
(Type I error).
« FN: the model predicts negative when it is positive
(Type II error).
Other important metrics:

oF1 score: An F1 score close to 1 indicates a good model,
while a value of 0 indicates poor predictive

performance [29].

e Accuracy: Measures the proportion of positive cases
correctly predicted [28].

eRecall: Identifies the proportion of actual positive cases
[28].

oROC curve: Helps with the overall model evaluation; it
is expressed by the AUC (area under the curve). A
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value close to 1 represents a good model [30].

V. RESULTS

A. . Images analyzed

The main results of this research are presented below,
covering the process from image acquisition to the evaluation
of manual classifications. To perform the classification,
Sentinel-2 satellite images were cropped to delimit the study
area. The images used correspond to true color composites
(RGB with bands B4, B3, and B2). Within the delimited
areas, objects in each image were manually classified using
QGIS.

Subsequently, the original image was transformed into a
false-color composite by incorporating the near-infrared band
in place of one of the visible bands. This approach highlights
vegetation and other elements with higher reflectance in the
infrared spectrum.

Pico de Orizaba

Fig. 2. Study areas cut out and classified

Figure 2 presents the set of satellite images corresponding to
the three study areas: Pico de Orizaba, Xalapa, and Cofre de
Perote. The top row displays the color composites of each
area, highlighting differences in land cover: vegetation
(reddish tones), urban areas (bluish tones), and sparse
vegetation (gray tones). It is important to note that these
images were generated using infrared bands to enhance the
accuracy of manual classification.

The bottom row shows the final classification results. This
representation enables a clearer comparison of the spatial
distribution of vegetation cover versus urban land area in
each of the study areas. Table II below summarizes the
classifications produced in QGIS.

TABLE II. Land Cover Classes and Coding

Color Land cover Coding
classes
Urban area UA (0)
Water bodies WB (1)
Dense DV (2)
vegetation
Sparse SV (3)
Vegetation
No vegetation NV (4)
Snow S (5)
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Table II presents the classifications obtained manually in
QQGIS. Six general groups were defined: Urban Zone (UZ),
representing built-up areas; Water Bodies (CA), correspond-
ing to rivers, lakes, or dams; Dense Vegetation (VD), associ-
ated with areas of high vegetation cover; Sparse Vegetation
(PV), referring to areas with intermediate or degraded cover;
No Vegetation (NV), representing arid surfaces; and Snow
(N), comprising areas covered by ice and snow. This last
category appears only in the images of Pico de Orizaba and
Cofre de Perote.

B. Evaluation of manual classification

The database used to run the algorithms corresponds to the
classified pixels from the three satellite images (Xalapa:
352,338; Pico de Orizaba: 572,412; Cofre de Perote: 359,827
classified pixels in each image). These datasets were exported
from QGIS in CSV format. Each record represents a pixel
with its spectral values per band, along with its coordinates
and the assigned class label (e.g., Urban Area, Water Bodies,
Snow, etc.).

For algorithm training and evaluation, each pixel set was
divided into two subsets: 80\% of the data were used for
training, and the remaining 20\% for testing. Subsequently,
5-fold cross-validation was applied to reduce bias and
increase the robustness of the algorithm results. The
outcomes are summarized in Table III.

TABLE III. Classification Metrics by Zone and Algorithm

Zones Metrics| RF | SVM | KNN

Accuracy] 0.9808]0.9293[0.9811

Xalapa | mg o T0.08080.9288] 0.9811

. Accuracy| 0.9806]0.7254]0.9776
Pico de

Orizaba |F1 Score|0.9805(0.7151(0.9776

Cofre de 1Accuracy| 0.9874/0.8855] 0.9828

Perote | F1 Score|0.98730.8746(0.9827

The evaluation of the metrics shows that, for the
classifications of the Xalapa image, both Random Forest (RF)
and KNN achieved nearly identical accuracy, with an F1
score of 0.98, indicating optimal and balanced performance.
In contrast, SVM produced more variable results (0.70-0.93),
reflecting a higher number of classification errors compared
to the other algorithms. For Pico de Orizaba and Cofre de
Perote, RF and KNN also achieved higher accuracy, while
SVM still provided acceptable performance.

These results were obtained through 5-fold cross-validation,
which reduces overfitting and provides more reliable
performance estimates. The execution times of each
algorithm for the study areas are shown below.

Execution Time of Algorithms for Imago Classification by Aroa
wei [l v [l v

Terw {minutes)

i
g

Fig. 3: execution time in algorithms
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Another key factor in evaluating the algorithms was
execution time. Random Forest (RF) demonstrated consistent
and robust performance across the previously discussed
metrics.

However, it was also the algorithm with the highest
computational cost for image classification, with execution
times ranging from 13 to 30 minutes. In contrast, KNN and
SVM required substantially less time (between 1 and 5
minutes), making them more practical when the goal is to
accelerate classification and reduce processing time (Figure
3).

Overall, these results indicate that KNN provides a more
favorable balance between efficiency and accuracy,
supporting its use as a reliable complement to manual image
evaluation. Conversely, RF remains a strong alternative when
the priority is to maximize classification accuracy, regardless
of execution time.

C. Visualization of the confusion matrix and ROC curve

Below are some of the results obtained from the different
classification algorithms. Figures 4, 5, and 6 illustrate the
performance of Random Forest in Xalapa, SVM in Pico de
Orizaba, and KNN in Cofre de Perote. Although all three
algorithms were applied to each study area, only
representative cases—ranging from lower to higher
classification performance—are presented.

Xalapa (RF) Xalapa (RF)

True positive rate
True class
Number of observal

o o @ w "
False positive rate Predicted class

Fig.4. ROC curve and confusion matrix for the classification
of Xalapa (RF)

In the case of Xalapa, the Random Forest (RF) model
achieved an AUC value close to 1, indicating an outstanding
ability to distinguish between classes. The confusion matrix
further confirms this accuracy, as most observations are
concentrated along the main diagonal with minimal
classification errors. These results demonstrate the robustness
of the algorithm in a heterogeneous urban—vegetation
environment (Figure 4).

Pico de Orizaba (SVM) Pico de Orizaba (SVM)

) S .
200900
175000
w1 9 w7635 ess26 17

True class

Number of observations

True positive rate

® K @

as 1 *
Predicted class

Fig.5. ROC curve and confusion matrix for the classification
of Pico de Orizaba (SVM)

Another example is Pico de Orizaba, where the SVM

algorithm exhibited more variable performance. Some
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classes, such as Urban Areas and Sparse Vegetation, achieved
AUC values greater than 0.99, whereas other classes,
including Dense Vegetation and No Vegetation, showed
values between 0.80 and 0.88, indicating difficulties in
discriminating among land-cover types. The confusion
matrix, in turn, reveals notable misclassifications between
Dense Vegetation and other land-cover types, as well as
between No Vegetation and Sparse Vegetation (Figure 5).

Cofre de Perote (KNN) Cofre de Perote (KNN)

35000

0000

8 e ]
H
Number of observations

20000

True class
2
8
2

True positive rate

H

10000

s000

o

False positive rate Predicted class

Fig.5. ROC curve and confusion matrix for the classification
of Cofre de Perote (KNN)

Finally, for the Cofre de Perote image, the KNN algorithm

achieved high AUC values, and the confusion matrix shows

that, despite the overall accuracy, some misclassifications

occurred between areas such as Dense Vegetation and No

Vegetation (Figure 6).

VI. DISCUSSION

According to the results obtained in this research, supervised
algorithms are essential for evaluating manual land cover
classifications derived from satellite imagery. Consistent
with the findings of [16], [19], and [20], the RF algorithm
demonstrated the highest accuracy in distinguishing the
classes created during the experimental phase. Its robustness,
ability to handle spectral variability, and efficiency in
managing complex pixel data confirm its excellent
performance in validating image classifications in
heterogeneous regions such as Xalapa, Cofre de Perote, and
Pico de Orizaba, areas characterized by urban zones, dense
vegetation, and bodies of water.

The K-Nearest Neighbors (KNN) algorithm also performed
well, yielding results comparable to those of RF. However,
the main difference lies in the execution time, with KNN
being considerably faster. As noted in [19], KNN stands out
for its computational efficiency, which was also confirmed in
the experimental phase of this study. Therefore, this
algorithm can be considered an optimal alternative when
speed and accuracy are required.

Conversely, the Support Vector Machine (SVM) algorithm
showed lower accuracy in this study compared to the other
two classifiers, unlike the results reported by [17] and [18],
where the SVM achieved superior performance. This
discrepancy can be attributed to the distinctive characteristics
of the study areas in this research (high variability, cloud
cover, and dense vegetation), which can reduce the spectral
separation of the categories, thus improving the performance
of the SVM algorithm, as well as the high spatial variability.
Finally, compared to the other two algorithms used, SVM is

19



LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol XIII, Issue 1, January - June 2026

governed by a linear function and is therefore sensitive to a
lack of homogeneity, unlike RF and KNN.

VII. CONCLUSION

The utility of supervised algorithms allows for the validation
and reinforcement of classifications performed manually in
QQGIS, corroborating their objectivity and computational
efficiency to support decision-making in land cover analysis.
While user-assigned classifications depend on their judgment
and experience (supported by the QGIS software), supervised
algorithms provide a quantitative and reproducible
framework that minimizes subjectivity in the process.
Therefore, the use of RF, KNN, and SVM not only produces
accurate results but also offers a scientific basis for
confirming visually delineated boundaries, thus improving
the reliability of the resulting classifications and their
applicability in remote sensing studies.
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