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Malware Detection with CNNs on Entropy and 
Greyscale Images 
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harryphuket@gmail.com

Abstract— This study investigates whether convolutional neural 
networks (CNNs) trained on visual representations of Portable 
Executable (PE) files can rival traditional machine learning 
classifiers trained on engineered features. A dataset of over 200,000 
PE files [1] was used to derive two feature sets (Basic and Ember-
Lite) [2] and to generate 256x256 greyscale and entropy images 
[3],[4]. Three CNNs (SimpleCNN, ResNet-18 [5], EfficientNet-B0 
[6]) were trained and evaluated against five baselines (Random 
Forest, XGBoost [7], CatBoost [8], LightGBM, Logistic 
Regression). Tree-based models with enriched features achieved the 
highest scores, with CatBoost reaching a ROC-AUC of 0.990. The 
best CNN, EfficientNet-B0 on entropy images, obtained a ROC-
AUC of 0.954. Although CNNs did not surpass feature-based 
models, they showed competitive results when feature engineering 
was constrained. These findings indicate that visual approaches 
offer a promising alternative for static malware detection, 
particularly when combined with entropy-based representations [9]. 

Keywords— malware detection, convolutional neural networks, 
entropy images, greyscale images, static analysis 

I. INTRODUCTION 
The rapid evolution of malicious software continues to 

pose a critical challenge to global cybersecurity. Traditional 
static and dynamic analysis techniques remain central to 
malware detection, yet their scalability and adaptability are 
increasingly strained by the volume and complexity of new 
samples emerging daily [10]. Static analysis, which inspects 
binary structure without execution, provides efficiency and 
safety but depends heavily on manually engineered features. 
These handcrafted representations are sensitive to obfuscation 
and require expert knowledge to maintain. Recent advances in 
deep learning have introduced new possibilities for automated 
feature extraction that may overcome such limitations [11]. 

Malware detection can be viewed as a binary classification 
problem in which a model must learn discriminative patterns 
between benign and malicious Portable Executable (PE) files. 
Earlier static approaches focused on syntactic features such as 
byte histograms, imported libraries, and section metadata [2]. 
While these features remain effective, they are often dataset-
specific and may fail when the underlying malware 
distribution shifts. Convolutional Neural Networks (CNNs) 
offer an alternative pathway [11] by learning directly from raw 
or visually transformed data. In computer vision, CNNs have 
achieved outstanding success in recognizing complex spatial 
relationships within images. When applied to malware, they 
can automatically extract high-level spatial–statistical 
representations from a binary’s byte sequence, potentially 
reducing reliance on expert feature engineering [12]. 

Transforming PE files into visual formats has gained 
attention because it allows direct use of image-based 

architectures without disassembling executables. Two 
representations have become prominent: greyscale images, 
formed by mapping byte values to pixel intensities, and 
entropy images [3],[4],[13], which highlight structural 
irregularities related to code density and compression. These 
visualizations reveal characteristic patterns that correspond to 
malware families, packing, and section entropy, providing 
CNNs with texture-like information unavailable to 
conventional static models. However, existing studies differ 
widely in dataset size, preprocessing, and evaluation 
methodology, making it difficult to assess [9],[14] whether 
CNN-based visual analysis can truly compete with established 
feature-based models. 

Prior work has shown that tree-based ensembles such as 
Random Forest, XGBoost [7], CatBoost [8], and LightGBM 
deliver high accuracy on engineered feature sets like EMBER 
[2], often exceeding 0.99 ROC-AUC. Although several 
researchers have experimented with CNNs on image 
representations [3],[9],[15], many comparisons are indirect, 
rely on small datasets, or use pretrained vision networks 
without systematic control of variables. The literature 
therefore lacks a consistent large-scale benchmark that 
contrasts CNN performance with traditional models under 
identical data and evaluation conditions. Furthermore, while 
some studies report promising CNN results, few investigate 
how architectural complexity or input modality (greyscale vs 
entropy vs combined) affect performance [6],[15] or 
generalization. 

This research addresses that gap through a controlled, 
large-scale comparison between visual-representation CNNs 
and feature-based classifiers for static malware detection. A 
dataset of more than 200,000 PE files was processed to 
generate both engineered features and 256x256 image 
representations [1]. Three CNN architectures of increasing 
depth, SimpleCNN, ResNet-18[5], and EfficientNet-B0 [6], 
were trained from scratch using greyscale, entropy, and dual-
channel inputs. Their results were benchmarked against five 
tree-based baselines (Random Forest, XGBoost [7], CatBoost 
[8], LightGBM, and Logistic Regression) built on two feature 
sets: a compact Basic subset and an Ember-Lite extension. All 
models were evaluated under identical stratified splits and 
metrics, including ROC-AUC, F1-score, precision, recall, and 
accuracy. 

The study contributes in three principal ways: 

1. It provides a reproducible comparison between CNN-
based and feature-based static detection using the same 
dataset and preprocessing pipeline. 

https://orcid.org/0009-0004-5674-2609
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2. It analyses the effect of image representation 

(greyscale, entropy, and combined) on CNN 
performance. 

3. It evaluates how model depth influences the trade-off 
between feature learning capacity and overfitting risk. 

By unifying these aspects, the work offers an empirical 
baseline for future research into vision-based malware 
detection and clarifies the extent to which CNNs can replace 
or complement engineered features [9]. 

II. BACKGROUND AND RELATED WORK 
Research on static malware detection has evolved from 

handcrafted feature extraction to representation-learning 
approaches based on neural networks. Early static pipelines 
focused on syntactic features derived from Portable 
Executable (PE) headers, import tables, and byte histograms 
[16], [17]. Ensemble methods such as Random Forest and 
XGBoost became widely adopted because they balanced 
predictive accuracy with interpretability. 

Subsequent studies explored the visual encoding of 
binaries as two-dimensional matrices, where raw bytes were 
transformed into greyscale images to capture structural 
patterns [3]. This approach enabled convolutional networks to 
learn discriminative textures associated with packed or 
obfuscated code without explicit feature engineering. Han et 
al. [4] and Kalash et al. [12] extended this concept by 
employing deeper CNNs that achieved performance 
comparable to engineered-feature baselines. 

Entropy-based representations introduced a further 
dimension by quantifying local randomness across the file, 
highlighting high-entropy regions characteristic of 
compression and encryption [15]. Brosolo et al. [14] 
demonstrated that combining byte and entropy channels 
improved separability between benign and malicious samples. 
However, most prior work relied on small datasets or 
inconsistent preprocessing, limiting reproducibility. 

The present study addresses these limitations through a 
unified pipeline incorporating both feature-based and image-
based approaches under controlled preprocessing and multi-
seed evaluation. By comparing ensemble and CNN 
architectures directly on 200,000+ samples, it contributes 
empirical evidence on the relative merits of learned versus 
handcrafted representations for static malware detection. 

III. METHODOLOGY 
In this section, the methodology featured in Fig. 2 is 

explained as follows: 

A. Dataset Construction 
The experiments employed a static malware dataset 

containing more than 200,000 Portable Executable (PE) files, 
comprising roughly equal proportions of benign and malicious 
samples. Each file was validated to ensure accessibility and 
correct labelling. No dynamic execution or network traffic 
data were used, maintaining strict static conditions. A group-
wise stratified split produced three subsets: 70% for training, 
15% for validation, and 15% for independent testing. 
Stratification ensured proportional representation of malware 
families and preserved class balance across splits. All 

preprocessing, feature extraction, and model training were 
performed offline to eliminate any risk of infection. 

 
Fig. 2. Methodological workflow for dataset processing, model training, and 
evaluation. 
The figure summarizes the experimental pipeline from dataset acquisition 
and preprocessing through feature engineering, image generation, and model 
evaluation across five random seeds. 

B. Feature Engineering 
Two engineered feature sets were created to provide 

traditional baselines. 

1. Basic set: extracted lightweight structural attributes 
such as file size, section counts, imported library 
frequencies, and entropy statistics. 

2. Ember-Lite set: extended the Basic features with a 
reduced subset of the EMBER 2018 dataset, including 
byte histograms, header metadata, and string features. 
The Ember-Lite feature set used here comprised only a 
small, computationally lightweight subset of the 
EMBER 2018 feature groups, selected to minimize 
pre-processing overhead whilst still producing a more 
detailed, EMBER-oriented set of features for 
comparison. 

Both sets were scaled using min–max normalization. 
These vectors served as input to five machine-learning 
models: Random Forest, XGBoost, CatBoost, LightGBM, and 
Logistic Regression. Hyperparameters were tuned by grid 
search on the validation split. 
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C. Image Generation 
For the visual-representation branch, each PE file was 

converted into two 256x256 images: a greyscale byte map and 
an entropy image.  PE files shorter than 65,536 bytes were 
zero padded before reshaping and files exceeding this length 
were truncated so that all samples produced a consistent 
256x256 matrix. 

• The greyscale representation mapped each byte value 
(0-255) to a pixel intensity, preserving sequential 
order. 

• The entropy representation applied a sliding-window 
Shannon entropy calculation to highlight structural 
irregularities related to code density, packing, and 
compression. 

Images were stored as compressed PNGs and normalized 
to the [0, 1] range at load time. Three input modalities were 
tested: single-channel greyscale, single-channel entropy, and 
dual-channel combined images. The dual-channel version 
concatenated normalized greyscale and entropy matrices 
along the channel axis to retain spatial alignment.  
Representative examples of the three image modalities are 
shown in Fig. 1. 

 
Fig. 1. Visualization of greyscale, entropy, and dual-channel image 
representations used for CNN training. The dual-channel view merges 
greyscale and entropy channels into red and green for clarity; CNNs process 
both as greyscale tensors. 

D. CNN Architectures 
Three convolutional neural networks of increasing depth 

and complexity were implemented to explore architectural 
effects. 

1. SimpleCNN: a custom lightweight model with three 
convolutional blocks and max-pooling, designed to 
provide a minimal baseline. 

2. ResNet-18: a residual architecture enabling deeper 
feature learning while mitigating vanishing-gradient 
issues. 

3. EfficientNet-B0: a compound-scaled network 
optimizing depth, width, and resolution for parameter 
efficiency. 

Each model concluded with a global average-pooling layer 
and a fully connected single sigmoid output neuron optimized 
with binary cross-entropy loss.  All architectures were trained 
from scratch rather than fine-tuned from natural-image 
weights to maintain domain specificity. 

More recent vision architectures exist, but the chosen trio 
provides a controlled progression from shallow to moderately 
deep networks, enabling a fair comparison of representational 
capacity while keeping reproducibility and computational cost 
practical for large-scale malware datasets. 

E. Training Procedure 
Training was performed using the PyTorch 2.8 framework 

on GPU hardware. Batch size, learning rate, and weight decay 
were tuned empirically through pilot runs. Early stopping 
based on validation loss prevented overfitting, and the best 
model weights were checkpointed. Feature vectors and image 
tensors were normalized to the [0, 1] range prior to training. 
Early experiments confirmed that standardization to [-1, 1] or 
z-scoring did not improve convergence for models trained 
from scratch. All random seeds, splits, and preprocessing 
parameters were fixed for reproducibility. During training, 
data augmentation was limited to horizontal and vertical flips 
to avoid distorting binary layout information. Each 
experiment was repeated across five random seeds to estimate 
variability. 

F. Evaluation Metrics 
Model performance was assessed on the held-out test set 

using multiple metrics: 

• ROC-AUC as the principal discrimination measure. 

• F1-score, precision, recall, and accuracy for 
complementary evaluation. 

• Calibration curves and confusion matrices for selected 
runs to examine reliability and error distribution. 

All results were reported as mean ± standard deviation 
across seeds. Timing and resource usage were recorded but 
not compared formally because training occurred on 
heterogeneous hardware. 

IV. DEPLOYMENT AND IMPLEMENTATION 
All experiments were executed on a Windows 11 

workstation equipped with an NVIDIA RTX 5080 GPU (16 
GB VRAM), a Ryzen 7 7800X3D CPU, and 32 GB RAM. 
The environment used Python 3.12 and PyTorch 2.8.0 (CUDA 
12.8) within a PyCharm-managed virtual environment. 
Dataset preprocessing and feature extraction were performed 
offline to prevent malware execution risk. 

A. Dataset and Preprocessing 
A total of 201,549 PE files from Lester (2021) were 

processed into multiple representations: (i) Basic PE features, 
(ii) extended Ember-Lite features, (iii) greyscale byte-maps, 
(iv) entropy images computed over 32-byte windows, and (v) 
dual-channel stacks combining greyscale and entropy tensors. 
Group-wise stratification by Imphash ensured partition 
integrity across train, validation, and test splits, mitigating 
leakage. 

B. Model Implementation 
Tree-based models (Logistic Regression, Random Forest, 

XGBoost, LightGBM, CatBoost) were implemented via 
Scikit-learn and native library APIs using identical folds and 
hyperparameter grids. For CNNs, three architectures were 
selected to represent increasing structural depth: SimpleCNN 
(three convolutional layers), ResNet-18, and EfficientNet-B0. 
All networks employed batch normalization, ReLU 
activations, early stopping, and Adam optimization with 
learning-rate scheduling. 

C. Training Protocol 
Training used Adam (learning rate = 1x10⁻³) with 

CrossEntropyLoss, ReduceLROnPlateau (patience = 2), early 
stopping (patience = 5), and batch size 128, capped at 40 
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epochs. Only the best-performing checkpoint (lowest 
validation loss) per run was retained for test evaluation. 
Results were averaged across seeds (42–46) and reported with 
standard deviation. 

D. Reproducibility Controls 
All outputs (model weights, logs, and metrics.json files) 

were stored under versioned directories for full traceability. 
Reproducibility was validated by selectively rerunning a 
subset of experiments on different hardware (MX250 laptop 
and MacBook CPU), confirming consistent metrics within 
variance bounds. The entire pipeline is available via a public 
GitHub repository. 

V. ANALYSIS AND DISCUSSION OF FINDINGS 

A. Overview 
The study provides a comprehensive comparative 

analysis, combining large-scale data, multiple feature 
representations, and a multi-seed evaluation to support robust 
and generalizable conclusions. 

This section presents the quantitative results obtained from 
both the feature-based and CNN-based branches of the study. 
All models were evaluated on the held-out test partition using 
identical metrics and configuration to ensure comparability. 
Performance values reported correspond to the mean of five 
random-seed runs, with standard deviation shown where 
applicable. 

B. Feature-Based Baselines 
Traditional classifiers trained on the Basic and Ember-Lite 

feature sets produced strong results across all metrics. The 
Basic feature set already provided a solid baseline, achieving 
ROC-AUC scores above 0.96 for ensemble methods. 
Incorporating the additional Ember-Lite attributes further 
improved separability between benign and malicious samples. 

Among the evaluated models, CatBoost delivered the 
highest and most consistent performance, reaching 0.990 ± 
0.001 ROC-AUC and an F1-score of 0.947 ± 0.005. XGBoost 
and LightGBM followed closely, differing by less than 0.002 
ROC-AUC, while Random Forest achieved comparable 
accuracy with slightly higher variance. Logistic Regression, 
as expected, under-fit the nonlinear relationships and 
produced the lowest AUC (≈ 0.94). These outcomes confirm 
that gradient-boosted tree ensembles remain a robust 
benchmark for static malware detection when high-quality 
engineered features are available. 

C. CNN Performance on Greyscale and Entropy Images 
The CNN experiments evaluated three architectures of 

increasing complexity (SimpleCNN, ResNet-18, and 
EfficientNet-B0) across three input modalities: greyscale, 
entropy, and dual-channel combined images. 

• Greyscale Images: captured structural layout but 
limited semantic variation.  SimpleCNN achieved 
0.886 ± 0.011 ROC-AUC, ResNet-18 0.937 ± 0.008, 
and EfficientNet-B0 0.931 ± 0.010. 

• Entropy Images: provided higher discriminative 
information due to encoding of randomness and 
packing density. Here, EfficientNet-B0 achieved 0.954 
± 0.005 and 0.898 ± 0.008 F1, the best CNN result 
overall, indicating that entropy-based spatial cues are 

particularly informative for distinguishing obfuscated 
malware. 

• Combined Images: merging greyscale and entropy 
channels offered only marginal gains for shallower 
networks and, in some cases, introduced redundancy. 
ResNet-18 reached 0.950 ± 0.009 ROC-AUC, while 
the dual-channel variant of EfficientNet-B0 achieved 
0.947 ± 0.004, showing little additional benefit. 

Training variability across seeds remained low (±0.002 
AUC), confirming stable convergence. Validation loss curves 
indicated earlier saturation for SimpleCNN, while deeper 
models continued improving over more epochs, reflecting 
greater representational capacity. 

D. Comparative Analysis 
A direct comparison between the best feature-based and 

CNN models highlights a clear but narrowing performance 
gap. CatBoost (Ember-Lite) exceeded EfficientNet-B0 
(Entropy) by approximately 0.036 ROC-AUC, achieved 0.983 
± 0.001 precision and 0.913 ± 0.011 recall compared with 
0.954 ± 0.004 precision and 0.848 ± 0.013  recall for the CNN. 
When feature engineering is limited, CNNs trained on entropy 
visualizations approach ensemble-level accuracy without any 
handcrafted inputs. 

Fig. 3 visualizes the overall comparison. Feature-based 
ensembles dominate the upper bound, while CNNs occupy a 
competitive mid-band with notably reduced preprocessing 
overhead. 

 
Fig. 3. Overall performance comparison of tree-based and CNN-based models 
across all input modalities 

Table I reports mean ± standard deviation over five 
random-seed runs for all models across Basic, Ember-Lite, 
greyscale, entropy, and combined inputs. 

 



ISSN:1390-9266 e-ISSN:1390-9134 LAJC 2026 50
DOI:

LA
T

IN
-A

M
E

R
IC

A
N

 J
O

U
R

N
A

L
 O

F
 C

O
M

P
U

T
IN

G
 (

L
A

JC
),

 V
o

l X
III

, I
ss

ue
 1

, J
an

ua
ry

 2
0

26

10.5281/zenodo.17941249

LATIN-AMERICAN JOURNAL OF COMPUTING (LAJC), Vol XIII, Issue 1, January - June 2026 

 
 

TABLE I. MODEL PERFORMANCE COMPARISON (FEATURE-BASED VS CNN) 
Summary of quantitative performance metrics (mean ± standard deviation) for all models across Basic, Ember-Lite, Greyscale, Entropy, and Combined input 
representations. 
 

Model Feature Set Bound ROC-AUC F1 Accuracy Precision Recall 

CatBoost Ember-Lite Upper 0.990 ± 0.001 0.947 ± 0.005 0.941 ± 0.005 0.983 ± 0.001 0.913 ± 0.011 

XGBoost Ember-Lite Upper 0.990 ± 0.000 0.940 ± 0.000 0.933 ± 0.000 0.983 ± 0.000 0.900 ± 0.000 

LightGBM Ember-Lite Upper 0.989 ± 0.000 0.936 ± 0.000 0.929 ± 0.000 0.982 ± 0.000 0.894 ± 0.000 

RandomForest Ember-Lite Upper 0.989 ± 0.000 0.929 ± 0.004 0.922 ± 0.004 0.977 ± 0.003 0.886 ± 0.008 

RandomForest Basic Upper 0.983 ± 0.001 0.932 ± 0.003 0.924 ± 0.003 0.966 ± 0.007 0.900 ± 0.010 

CatBoost Basic Upper 0.983 ± 0.001 0.938 ± 0.002 0.930 ± 0.002 0.960 ± 0.003 0.916 ± 0.005 

XGBoost Basic Upper 0.983 ± 0.000 0.937 ± 0.000 0.929 ± 0.000 0.963 ± 0.000 0.912 ± 0.000 

LightGBM Basic Upper 0.976 ± 0.000 0.919 ± 0.000 0.911 ± 0.000 0.959 ± 0.000 0.882 ± 0.000 

XGBoost Ember-Lite Lower 0.971 ± 0.000 0.898 ± 0.000 0.891 ± 0.000 0.980 ± 0.000 0.829 ± 0.000 

CatBoost Ember-Lite Lower 0.969 ± 0.001 0.894 ± 0.005 0.887 ± 0.005 0.979 ± 0.003 0.822 ± 0.009 

RandomForest Ember-Lite Lower 0.966 ± 0.002 0.904 ± 0.005 0.897 ± 0.005 0.976 ± 0.001 0.842 ± 0.008 

LightGBM Ember-Lite Lower 0.965 ± 0.000 0.902 ± 0.000 0.895 ± 0.000 0.971 ± 0.000 0.843 ± 0.000 

EfficientNetB0 Entropy - 0.954 ± 0.005 0.898 ± 0.008 0.889 ± 0.008 0.954 ± 0.004 0.848 ± 0.013 

ResNet18 Combined - 0.950 ± 0.009 0.904 ± 0.010 0.890 ± 0.015 0.916 ± 0.044 0.895 ± 0.039 

EfficientNetB0 Combined - 0.947 ± 0.004 0.898 ± 0.006 0.888 ± 0.006 0.949 ± 0.005 0.852 ± 0.011 

ResNet18 Entropy - 0.943 ± 0.006 0.897 ± 0.008 0.888 ± 0.008 0.954 ± 0.014 0.847 ± 0.014 

RandomForest Basic Lower 0.940 ± 0.001 0.879 ± 0.002 0.868 ± 0.002 0.930 ± 0.001 0.833 ± 0.003 

LogisticRegression Ember-Lite Upper 0.940 ± 0.000 0.855 ± 0.000 0.844 ± 0.000 0.927 ± 0.000 0.793 ± 0.000 

ResNet18 Greyscale - 0.937 ± 0.008 0.862 ± 0.013 0.854 ± 0.012 0.943 ± 0.006 0.795 ± 0.025 

LogisticRegression Ember-Lite Lower 0.934 ± 0.000 0.876 ± 0.000 0.863 ± 0.000 0.917 ± 0.000 0.838 ± 0.000 

EfficientNetB0 Greyscale - 0.931 ± 0.010 0.880 ± 0.008 0.871 ± 0.006 0.945 ± 0.017 0.824 ± 0.027 

CatBoost Basic Lower 0.929 ± 0.001 0.874 ± 0.002 0.862 ± 0.003 0.927 ± 0.005 0.826 ± 0.002 

XGBoost Basic Lower 0.924 ± 0.000 0.874 ± 0.000 0.862 ± 0.000 0.918 ± 0.000 0.835 ± 0.000 

LightGBM Basic Lower 0.918 ± 0.000 0.872 ± 0.000 0.860 ± 0.000 0.918 ± 0.000 0.831 ± 0.000 

SimpleCNN Combined - 0.898 ± 0.017 0.777 ± 0.153 0.788 ± 0.095 0.898 ± 0.055 0.728 ± 0.210 

LogisticRegression Basic Upper 0.888 ± 0.000 0.801 ± 0.000 0.784 ± 0.000 0.853 ± 0.000 0.755 ± 0.000 

SimpleCNN Greyscale - 0.886 ± 0.011 0.849 ± 0.011 0.833 ± 0.017 0.886 ± 0.035 0.817 ± 0.015 

SimpleCNN Entropy - 0.879 ± 0.018 0.843 ± 0.012 0.835 ± 0.009 0.931 ± 0.020 0.771 ± 0.032 

LogisticRegression Basic Lower 0.819 ± 0.000 0.757 ± 0.000 0.733 ± 0.000 0.798 ± 0.000 0.720 ± 0.000 
 

To further illustrate error distribution between benign and 
malicious classifications, Fig. 4 presents normalized 
confusion matrices for the best-performing ensemble 
(CatBoost) and CNN (EfficientNet-B0) models. 

 

Fig. 4. Normalized confusion matrices comparing the best ensemble 
(CatBoost – Ember-Lite Upper Bound) and CNN (EfficientNet-B0 – Entropy 
Input) models. CatBoost achieves slightly superior precision on benign 
samples, while EfficientNet-B0 maintains strong recall on malware detection, 
demonstrating the narrowing gap between traditional and visual-based static 
analysis approaches. 

 Examination of the confusion matrices showed that CNNs 
occasionally misclassified small or lightly obfuscated 
malware samples, particularly where entropy images 
remained sparse after padding. In contrast, the tree-based 
models sometimes mislabeled benign files exhibiting elevated 
entropy or atypical section structures. These patterns are 
consistent with the feature sensitivities of each model family 
and help explain why tree-based models still retain a small 
overall advantage. 
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E. Combined Image Representation and Interpretation 

The hypothesis that merging greyscale and entropy inputs 
would enhance classification performance was not supported 
by the results. Across all CNN architectures, the dual-channel 
variant produced near-identical or slightly inferior ROC-AUC 
values compared with single-channel entropy inputs. This 
outcome reflects an important characteristic of PE 
visualization: while greyscale mappings and entropy images 
appear visually distinct, they encode strongly correlated 
structural information. 

The greyscale representation captures the sequential byte 
distribution of sections, making dense code regions appear 
darker and sparse or zero-padded regions lighter. Entropy 
visualization, computed over fixed 32-byte windows, 
highlights the same structural boundaries by assigning higher 
intensity to compressed or encrypted blocks and lower 
intensity to static resources or padding. When concatenated, 
both modalities effectively describe the same transitions in 
spatial density and randomness. This redundancy dilutes 
gradient salience during training, as filters in early CNN layers 
receive conflicting but overlapping cues, hindering 
convergence to strongly discriminative features. 

From a signal-processing perspective, direct stacking of 
channels also constrains the network to treat the two 
modalities as spatially aligned, which may not reflect semantic 
complementarity. A more effective fusion could involve 
learned attention or adaptive weighting between channels, 
allowing the model to emphasize entropy cues where they are 
most informative. Another avenue would be RGB-style 
compositing, in which greyscale, entropy, and a derived 
statistical feature (such as local variance or byte-frequency 
gradient) are encoded into separate color channels. This 
approach may exploit richer feature interactions akin to 
texture analysis in natural images. Alternatively, late fusion 
strategies (where embeddings from separate CNN branches 
are combined at the dense layer stage) could preserve each 
modality’s distinct representational space while capturing 
joint correlations. 

The observed stagnation of performance in combined 
inputs therefore does not imply redundancy between visual 
and entropy domains per se, but rather that naive spatial 
concatenation fails to capitalize on their complementary 
nature. Future research should explore cross-channel 
attention, feature-level fusion, or transformer-based 
architectures capable of learning non-linear relationships 
between modality-specific embeddings. 

F. Interpretation of Key Findings 
Three principal insights emerge from the experimental 

results. 

1. Entropy images outperform greyscale inputs, revealing 
high-entropy packing and obfuscation regions strongly 
correlated with malicious binaries. The results indicate 
that entropy-based CNNs capture discriminative 
information unavailable from structural byte layouts 
alone. 

2. Model depth directly influences performance. Deeper 
CNNs such as ResNet-18 and EfficientNet-B0 
consistently surpass SimpleCNN, confirming that 

hierarchical feature extraction enhances visual 
malware representation learning. 

3. Feature engineering versus representation learning: 
feature-based ensembles remain superior when rich 
handcrafted features are available, but CNNs offer a 
promising alternative for scalable, fully automated 
pipelines where feature computation is infeasible or 
costly. 

The comparative results highlight that entropy 
visualizations preserve generalizable statistical cues about 
randomness and code density, while feature-engineered 
models exploit explicit semantic attributes. The best CNN 
configuration (EfficientNet-B0 trained on entropy images) 
achieved 0.954 ± 0.005 ROC-AUC, compared with 0.990 ± 
0.001 for the CatBoost ensemble on the Ember-Lite feature 
set. This ~ 0.036 AUC difference demonstrates a narrowing 
gap between learned visual and engineered feature 
representations, even though ensemble methods remain the 
upper bound. 

Beyond comparative accuracy, these results highlight a 
wider methodological shift in static malware research. As 
handcrafted features reach maturity, incremental performance 
gains often come at the cost of increased preprocessing 
complexity and domain dependence. Visual learning 
approaches, by contrast, demonstrate the capacity to 
generalize across unseen binaries with minimal feature 
engineering. Their scalability and model-agnostic input 
pipeline make them well suited for future integration into 
hybrid detection frameworks, combining the interpretability 
of engineered features with the adaptability of deep 
representation learning. 

G. Broader Implications and Limitations 
Although extensive, this comparison remains limited to 

static byte-level analysis and does not incorporate dynamic or 
hybrid behavioral features. Training and evaluation were 
conducted on heterogeneous hardware, and while 
reproducibility was confirmed, computational cost was not 
measured formally. Furthermore, dataset balance was 
maintained artificially, whereas real-world malware corpora 
are often heavily skewed. 

These constraints suggest several research extensions: 
combining static and dynamic modalities; benchmarking 
under naturally imbalanced distributions; and assessing 
architecture efficiency across larger datasets or through 
transfer learning. 

The dataset contained 201,549 executables, comprising 
86,812 benign files and 114,737 malware samples. Although 
this distribution is only moderately skewed towards malicious 
files, real-world environments are typically dominated by 
benign software. Future evaluations should therefore assess 
performance and calibration under more strongly imbalanced 
conditions, or more benign-dominated conditions. 

Nevertheless, the findings reinforce the viability of CNN-
based static detectors as interpretable, automated 
complements to feature-based models. With entropy-derived 
visual inputs, CNNs achieved competitive performance within 
3-4% ROC-AUC of state-of-the-art ensembles while 
eliminating manual feature design, indicating strong potential 
for scalable, real-time malware triage systems. 
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VI. CONCLUSION 
This study compared feature-based machine-learning 

models and convolutional neural networks (CNNs) for static 
malware detection using a dataset of more than 200,000 
Portable Executable files [1]. The experimental design 
provided a unified benchmark in which both traditional 
classifiers and visual deep-learning models were trained and 
evaluated under identical conditions. 

The results demonstrated that tree-based ensembles, 
particularly CatBoost [8], remain the most accurate static 
detectors when high-quality handcrafted features are 
available, achieving 0.990 ± 0.001 ROC-AUC and 0.947 ± 
0.005 F1. However, CNNs trained directly on byte-derived 
image representations achieved competitive performance 
without manual feature engineering. Among the visual 
models, entropy-based inputs consistently outperformed 
greyscale and combined modalities, and deeper networks such 
as ResNet-18 [5] and EfficientNet-B0 [6] significantly 
exceeded the accuracy of the shallow SimpleCNN. These 
findings confirm that entropy visualization provides strong 
discriminative cues and that model depth enhances 
representational capacity in image-based malware analysis 
[3],[4]. 

The comparative analysis revealed a narrowing gap of 
approximately 0.036 ROC-AUC between the best feature-
based and CNN models, suggesting that vision-driven 
approaches can serve as scalable, automated alternatives when 
handcrafted features are unavailable or costly to compute. 

Future work should explore hybrid static–dynamic 
pipelines that combine image-based deep learning with 
lightweight engineered features to further improve robustness 
against obfuscation and dataset drift [14]. Benchmarking 
computational efficiency across uniform hardware and 
assessing real-world, imbalanced data distributions would 
also strengthen the practical applicability of visual malware 
detection methods. 

The limited improvement from the combined greyscale–
entropy representation further highlights the challenge of 
naive multimodal fusion. Although the two inputs differ 
visually, their spatially correlated content may reduce 
discriminative gradients when processed jointly; suggesting 
that future architectures should employ attention-based fusion 
or late-stage embedding integration to better exploit 
complementary features without introducing redundancy. 
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Note on the Use of Artificial Intelligence (AI): 

AI tools were used only for minor language editing and 
reference formatting. All methodological design, analysis, 
data interpretation, and writing decisions were performed by 
the author. 
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