LATIN AMERICAN JOURNAL OF COMPUTING LAJC, VOL. 1, NO. 1, OCTOBER 2014

Rate-based Synchronous Diffusion Algorithm
Sensor Networks

José Luis Carrera
University of Neuchatel
jose.carrera(@unine.ch

Danilo Burbano
University of Neuchatel
danilo.burbano@unine.ch

Abstract—Sensor networks applications often require global
ime synchronization between numerous sensors. In this paper we
implemented the Rate-Based Synchronous Diffusion Algorithm
as described in [RE1] on TelosB Motes with Contiki. We report
the development procedure and the results obtained on the
TARWIS testbed from the University of Bern, Switzerland.

Index Terms— time synchronization, mobile reference node,
TARWIS tesbed, Rate-Based Synchronous Diffusion,
synchronization initiator.

I. INTRODUCTION

LOBAL synchronization is a crucial issue to deal with in

sensor network applications. This work relies on the
Rate-Based Synchronous Diffusion method toachieve global
synchronization within a sensor network. The implementation
ofthe method in this work was divided in two general phases:

e Neighbours Discovery.
e Convergence Phase.

The Main goal of this project is to achieve a global
synchronization between the 40 nodes in a sensor network.
The algorithm solution was developed with Contiki operating
system and its performance was tested using TARWIS testbed
management architecture.

II. NEIGHBOURS DISCOVERY

Defining the Neighbour Tables is important and one of the
first steps in the initialization of the sensor network. In this
work a deterministic neighbor discovery method is used.

A. Discovery

In order to acquire the Neighbour Table, each node transmits
broadcast messages according to a schedule defined by the
user. This broadcast contains the id of the node and its clock
ticks when is send. When a broadcast packet is received, the
entry is checked to find out if it is already present in the
Neighbour Table or not. If not, the offset between both nodes
is computed and added to the Table with the node id. The
Ratio Signal Strength Intensity (RRSI) is also computed and
added to the Table. The user can schedule the broadcast with 3
different parameters:

Didier Aeberhard
University of Freibourg
dieder.aeberhard@unifr.ch

Thomas Rouvinez
University of Freibourg
thomas.rouvinez@unifri.ch

(1) the time the node waits after started to begin broadcasting,
(2) the time the node waits after sending the broadcast, and
(3) the number of times the broadcast is resend

Note that the time the node waits after sending a broadcast
will be tuned in Section 5 and called broadcast interval.

III. CONVERGENCE PHASE (CLOCK SYNCHRONIZATION)

We are using an internal synchronization mechanism. This
means that each node knows how the clock of its neighbours
works and then translates from one clock time to another. In
order to reach such behavior on each node, a fully localized
diffusion based method is implemented in which each node
exchanges and updates information locally with its
neighbours.

A. Principle

The Rate-Based Synchronous Diffusion is a fully
distributed and localized method to synchronize locally the
nodes without a global synchronization initiator. This
diffusion method achieves global synchronization by
spreading the local synchronization information to the whole
system and then each node in the overall network agrees to
change its clock readings to a consensus value. In the end the
times of each node will converge to a global common time.

B. Unicast

Each node will iterate over all its neighbours and will
determine the offset between the clocks using unicast
messages with a modified Round-Trip (RTT) Synchronization
schemes. The original scheme uses four different clock times
when the message is sent form the neighbor node and when it
is received from the node we want to synchronize the time. So
that the offset of those clock times is more accurate. Then the
node will adapt its time by a factor » to the neighbours node
time. Finally after a non-deterministic number of rounds of
diffusion the clock in each sensor will have the same value.
Note that the factor » will be tuned in the Section 5 and called
r-value.

IV. METHODS

The functions for sending/receiving unicast messages are
described in this section as it is a modified version of the RTT
synchronization. A unicast message contains four parameters:

LATIN AMERICAN JOURNAL OF COMPUTING LAJC, VOL. 1, NO. 1, OCTOBER 2014

(1) a boolean value to know if the message is completeor not,
(2) a clock time value, and
(3) anode id.

The function send_uc prepares a message to be sent to a
node from the Neighbour Table. The message contains the id
of the node (so that the other node knows who the sender is)
and the boolean value false to know the message is not
complete.

static void send_uc(){

//Write the id of the current node
tmRoot. originator = node_id;

tmRoot. completed = false

//Prepare the unicast packet to be sent.

packetbuf_copyfrom (&tmRoot, sizeof (tmRoot));
//Send
unicast_send (&uc, &addr);

}
H

The function recv_uc is separated in two parts. The first
part concerns the messages that are completed and the second
otherwise.

If the message is complete, the new time of the node is
directly computed using the following formula:

newTime = clocktime()*r_(clocktime()-tmSlave.time)

And the new clock time is set. Using this formula is slightly
different from the RTT sync one. In fact, here we only take the
two times of the different node to do the offset.

Otherwise, the message is filled up with the id and clock
time of the node, set completed and sent back to the originator
node.

static void recv_uc(struct unicast_conn #c, const rimeaddr_t sfrom’

//Read the message

packetbuf_copyto(&tmSlave);

//1f the hardware is not waiting for a message, update the time
if (tmSlave. completed){

newTime = clock_time () — r#(clock_time () — tmSlave.time);
clock_set (newTime);
telse{

//Directly get the time when a runicast message is received
tmSlave. completed = true;

tmSlave. originator = node_id;

tmSlave. time = clock_time ();

//...then copy the message and send it back...

packetbuf copyfrom(&tmSlave, sizeof (tmSlave)):
unicast_send(&uc, from):

V. EXPERIMENTS

The first part of the experiments was done using the Telos
nodes. Two parameters were tuned:

(1) the r-value of the syncing algorithm, and

(2) the broadcast interval

The r-value was set to 0.5 and will be tuned afterwards. The
broadcast interval was set to at least 5 seconds in order to let
the nodes discover each other. The second part consisted in
testing our algorithm on the TARWIS platform.

A. Broadcast interval and r-value tuning

The tuning of the broadcast interval is crucial to avoid
congestion and packets loss while the r-value tuning will
increase the syncing convergence.

Three values were chosen for the broadcast interval: 5, 10
and 15 seconds. Using an interval of 5 seconds was not
enough as the nodes were able to sync only for a short period
of time before receiving wrong values. With a 10 seconds
interval, the results were far better and the node kept on
synchronizing during the whole period. With the 15 seconds
interval, the results were worst than with 10 seconds.

In fact at the end of the period, the nodes were not
synchronized as nicely as before.

For those reasons, an interval of 10 seconds was kept for the
rest of the tests.

As the r-value has to be between 0 and 1, the value 0.25 and
0.5 were chosen.

In fact as the synchronization is made between 2 nodes,
values higher than 0.5 mirror the value lower than 0.5. The
value 0.5 gave a better convergence between all the nodes
after the test period.

Figure 1 shows the results with a r-value of 0.5 and an
interval of 10 seconds.

g
2
g

Diference betwee:

a 500 1000 1500 2000

Measurements over e nodes

Fig.1. Graph of the difference of time between a node and the TARWIS time
through time with a r-value of 0.5 and a broadcast intervals of 10 seconds.

B. General tuning

The r-value and the broadcast interval are not the only
tunable parameters.

Firstly, a different protocol (X-MAC) for sending/receiving
packets was tested.

Secondly, as we modified the RTT synchronization
algorithm, we also tested the original one.

The X-MAC protocol was used with the same parameters as
before. As expected, the nodes take more time to converge.
This is due to the fact that the nodes are not constantly
checking for an incoming message.

2500

LATIN AMERICAN JOURNAL OF COMPUTING LAJC, VOL. 1, NO. 1, OCTOBER 2014

The genuine RTT synchronization is also tested with the
same parameters. As the time is measured four times and the
offset is calculated differently, the results show that the
synchronization is converging slower but more constantly.

Figures 2 and 3 show the result graph of those two tuning.

=0.5, 10 sec inerval, XMAC compilation

B Difierence

o —— Mean (Difierence)

f_- _r. -‘- aym
CFE '-::j:‘_"’:-’:-'t'f'b!':r?-‘:-‘:'f?.?';‘
F e S

I N AL

ime and the nodes'fime

Diflerence beween TARW S i
g
L]
)
]
o
ﬁ
|

Measuraments aver ihe nodes.

Fig.2. Graph of the results using X-MAC as compilation parameter protocol.

VI. IMPROVEMENTS

Even if the synchronization works well, there is still room
for improvements.

Firstly, we were unable to let a node synchronize its clock
further than 2° clock ticks. In fact, it seems that a cast is
wrongly implemented in our code but we were unable to find
it. Secondly, with more time we could have made more tests
between our modified RTT and the genuine one in order to see
more meaningful differences.

1=0.5, 10 sec interval, Null MAC, RTT carrection

Diference between TARWIS fime and nodes” e

VII. CONCLUSION

Isolating the optimal interval for the neighbour discovery
phase in real world scenarios is a challenge. Indeed not only
we need to consider energy efficient mechanisms but also
intelligent algorithms for establishing and adapting
appropriate broadcasting intervals. The reason behind it lies in
impacting as little as possible the synchronization phase.

Determining neighbour relationship between two nodes is a
challenging process too. The environment conditions of the

network can suddenly change during the working time,
influencing parameters like RSSI or round trip time which are

used to define neighbour tables.

REFERENCES

[1] Li Qun and Daniela Rus, Global clock synchronization in
sensor networks, IEEE Transactions on Computers, Vol. 2,
2006, pp. 214-226.

Danilo Burbano Acuiia received his B.S.
degree in systems engineering from
National Polytechnic School, Quito,
Ecuador, in 2006. From 2007 to 2013 he
was a system analyst and software
developer in three different enterprises.
He is currently pursuing the M.S. degree
in computer science at the University of
Bem, Neuchatel and Freibourg in

/ jor of a paper about Green Computing and
coauthor of a paper about the Internet of Things and Urban
Innovation. His research interest includes the development and
deployment of wireless sensor networks, and applications of
machine leaming.

José Luis Carrera V was bom in Quito,
Ecuador. He received the B.S. in systems
engineering from National Polytechnic
School of Ecuador in 2005 and his M.S. in
Communication and Technologies of
Information Management degree from
National Polytechnic School in 2012.
From 2005 to 2011, he was a geo-
tem analyst in National Geographic Institute of
re he worked in different projects with national
scope. From 2011 to 2013, he was Professor in the Computer
Sciences Engineering Department in National Polytechnic
School of Ecuador.
Currently, he is pursuing another M.S. degree in Computer
Science and a Specialization in Distributed Systems in a joint
master program at the University of Bern, Neuchitel and
Freibourg in Switzerland.
His research interest areas include distributed systems with

wireless sensor networks, mobile communications and pattern
recognition and machine learning for human activity.

Thomas Rouvinez received his
B.S degree in computer sciences
from the University of Freibourg,
Switzerland. He is currently
pursuing the M.S degree in
computer science at the University
of Bern, Neuchatel and Freibourg
in Switzerland. His research
1ced networking.

LATIN AMERICAN JOURNAL OF COMPUTING LAJC, VOL. 1, NO. 1, OCTOBER 2014

Didier Aeberhard, received the B.S
degree in computer from the
University of Freibourg, Switzerland.
Currently he is pursuing a M.S.
degree in Computer Science and a
Specialization in Distributed Systems
in a joint master program at the
University of Bem, Neuchatel and
Freibourg in Switzerland.

His research interest areas include advanced networking and
machine leaming.

