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Abstract—Path finding is a common problem in computer 

games. Most videogames require to simulate thousands or millions 

of agents who interact and navigate in a 3D world showing 

capabilities such as chasing, seeking or intercepting other agents. 

A new hierarchical path finding solution based on navigation 

meshes is proposed in order to minimize the complexity in big 

environments. The method has two steps: Firstly, it creates the 

hierarchy tree based on a recursive partitioning. Then, the optimal 

path is found in the hierarchy at certain level. This approach 

performs much faster path finding calculations than a common 

A*. These claims are verified on big environments.  

 
Index Terms—A*, crowd simulation, graph algorithms, graph 

partitioning, hierarchical path finding, HPA*, navigation meshes, 

path planning, Recast, route planning, shortest path search. 

 

Resumen— La búsqueda de ruta es un problema común en los 

juegos de computador. La mayoría de los videojuegos requiere 

simular miles o millones de agentes que interactúan y navegan en 

un mundo 3D mostrando capacidades tales como persecución, la 

búsqueda o la intercepción de otros agentes. Se propone una nueva 

solución de búsqueda de ruta jerárquica basada en mallas de 

navegación con el fin de minimizar la complejidad en entornos 

grandes. El método tiene dos etapas: En primer lugar, se crea un 

árbol de jerarquía basada en un particionamiento recursivo. 

Después, el camino óptimo se encuentra en la jerarquía a cierto 

nivel. Este enfoque lleva a cabo cálculos de búsqueda de ruta más 

rápido que un A* común. Estas afirmaciones son verificadas en 

entornos grandes.  

 
Palabras claves—A*, algoritmos de grafos, búsqueda de ruta 

jerárquica, búsqueda de trayectoria más corta, HPA*, mallas de 

navegación, partición de grafos, planificación de trayectorias, 

Recast, simulación de multitudes. 

 

 

I. INTRODUCTION 

ATH finding is a common problem in computer games. 

Most videogames require to simulate thousands or millions 

of agents who interact and navigate in a 3D world showing 

capabilities such as chasing, seeking or intercepting other 

agents. This behavior is solved using path finding. A* is the 

most commonly used method to determine the shortest path 

between two points. It expands the nodes in the graph 

representation of the environment with the smallest estimated 
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solution cost first; however the cost of this search can grow 

exponentially with the size of the terrain and the allocated 

memory is very limited. Therefore, a hierarchical subdivision 

of the world environment is necessary under those restraints. 

 Hierarchical path finding has been studied in the last decade, 

it allows to compute the shortest and optimal route between two 

locations in large terrains based on a hierarchical graph. This 

significantly decreases the execution time and memory 

footprint in crowd simulation environments. Many of these 

approaches only have one abstract graph to work on. It means, 

the searches are just done on one abstract level of the 

environment subdivision. These approaches have been only 

applied in 3D environments based on regular grids. 

 This new method proposes a new hierarchical path finding 

solution for big environments. A navigation mesh is used as 

abstract data structure to partition the 3D world. Then, a graph 

representation is extracted and considered it as the level 0 in a 

hierarchical tree. After, many subdivisions are created by 

recursively partitioning a lower level graph into a specific 

number of nodes. The number of nodes is a parameter. The 

partition is performed until the graph of the latest level cannot 

be divided. Thus, a particular path planning search can be 

executed in any level of this hierarchical tree. The higher the 

level of the hierarchy, the fewer the number of nodes to search 

in. This approach allows faster path finding calculations than a 

common A* without any hierarchy.  

II. RELATED WORK 

Many path finding algorithms have been studied for more 

than a decade, all of which attempt to balance the inherent 

tradeoff between two criteria, namely the path planning runtime 

computation and the resulting path quality. 

The computational cost depends on how the scenario is 

divided (based on grids, waypoints or navigation meshes) and 

whether the navigation environment is fully static or dynamic, 

where a complex replanning may be required on the fly in order 

to get the correct path.  

At present, a hierarchy of graphs is applied to reduce the 

computational calculation known as hierarchical path finding, 

where the idea is to decompose the search problem into multiple 

searches on smaller graphs and to cache information about path 

segments that are shared by many routes. The higher the level 
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the graph belongs to, the smaller the number of nodes the graph 

has.  

A. Environment Division 

In videogames and artificial intelligence fields, the 3D world 

environment could be characterized as a weighted direct graph. 

There are well known structures suitable for fast path planning 

calculation. These spatial divisions allow fast searches for 

collision-free paths, but which are not necessarily globally the 

shortest ones. The most common environment representations 

are regular grids, roadmaps, and navigation meshes (NavMesh). 

 

1) Regular Grids 

 Regular grids are the simplest way to represent the 3D 

world. This regular cell grid is commonly used for both 

global and local paths of agents.  The scenario is divided 

into a two dimensional square cells with the same size. Each 

cell can have two states: opened or blocked. An opened cell 

is the space where the character can stand or move in, a 

blocked one is not accessible for the character because there 

are obstacles or walls. However, more than two states can 

be stored in a cell such as density, percentage of occupancy, 

etc. In the method proposed by Loscos [1], they store more 

than two states in each cell of a regular grid. Each cell has 

local information for collision of the environment and 

agents in order to improve the realism of the simulation. It 

also can be extended for creating more complex agent-

environment behaviors using different layers [2], [3]. 

A navigation graph can be extracted from the regular grid 

by using the connectivity information between cells. Each 

node in the graph represents a cell and an edge the link 

between two cells. (See Fig. 1). 

If the virtual world is small and grid-like, this technique is 

useful. Also, this approach is ideal for 2D terrains where the 

height of the character is not relevant. Moreover, the 

resolution of the grid determines how accurate it represents 

the walkable space. However, the memory cost becomes 

unacceptable when the number of cells is extremely high for 

a regular grid with enough resolution. The idea of 

partitioning the world representation in cells with big sizes 

in order to mitigate this problem could affect the path 

quality. 

Other limitation of working on grids is the coarse coverage 

of underlying terrain, it means that one big cell could cover 

both walkable and obstacle area.  It should classified as 

either walkable or obstacle under some criterion. Also, the 

paths do not look realistic because of the agent movement 

is only restricted to do fixed angle turns. Motions created by 

grid search tend to be unnatural because, for grid searches, 

a path smoothing step needs to be applied in the post-

processing phase resulting in expensive queries. (See Fig. 

2). 

Therefore, using large grids that are composed for 

thousands of cells could easily exceed the memory 

requirements of the current high-end hardware provides. 

Moreover the preprocessing time of calculating the 

extracted graph becomes impractically large with the 

growing number of cells. All of these limitation make a grid 

representation not suitable for big environments. 

 

2) Roadmaps 

The Probabilistic Roadmap Planner (PRM) [4], [5] is a 

planner that can compute collision-free paths. The PRM 

consists of two phases: a construction phase (off-line) and a 

query phase (on-line). In the construction phase, a roadmap 

is built, it consists of computing a very simplified 

representation of the free space by sampling configurations 

at random. Then the sampled configurations are tested for 

collision and each collision-free configuration is retained as 

a "milestone". Each milestone is linked by straight paths to 

its k-nearest neighbors. Finally the collision-free links will 

form the PRM. 

Sampled configurations and connections are added to the 

roadmap until the roadmap is dense enough. A roadmap is 

normally represented as a graph in which the nodes 

correspond to placements of the entity and the edges 

represent collision-free paths between these placements. 

In the query phase, the start and goal configurations are 

connected to the roadmap. Then, the path can be obtained 

by a Dijkstra shortest path query. (See Fig. 3). 

A roadmap can also use a Voronoi diagram classifier [6]. 

The Voronoi diagram is one of the most popular structure 

 
Fig. 1.  Regular Grid Extraction with two states: World environment (a). 

Extracted graph for the upper part of the grid (blue nodes have opened 
state and red nodes have blocked state) (b). 

  

 
Fig. 2.  Limitations of Grid Methods: Walkable and obstacle area inside the 

same cell (a). Restricted movement (fixed angles) (b). 
  

 
 

Fig. 3.  Probabilistic Roadmap Planner: Connect Start and Goal node to the    

roadmap. 
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for spatial partitioning. Given seed points, it will partition 

the plane in cells such that for each seed there will be a 

corresponding cell consisting of all points closer to that seed 

than to any other. 

In order to calculate the seeds, a random sample is picked 

of the entity (placement) in each iteration. Then, the 

placement is checked whether collision free from the entity 

is. If so, it is retracted to the Voronoi diagram using binary 

interpolation. Finally, the edges are also retracted until 

every part of the edge is at least some pre-specified distance 

away from the obstacles. (See Fig. 4). 

 

Unfortunately, the PRM method leads to low quality 

roadmaps, consisting of straight line segments that require 

a lot of time-consuming smoothing in order to be useful for 

virtual world applications. This is due to the random nature 

of the PRM method. Also, it drives to larger graphs when 

many milestones are needed. 

 

3) Navigation Meshes 

Navigation Meshes (NavMesh) is a data structure that is 

specifically designed for supporting path planning and 

navigation computations. It encodes a convex 

decomposition of the scene where each convex polygon 

(nodes) is a walkable area and they are connected using 

links (edges) that provide the connection between cells for 

agents to walk through. This representation has few nodes 

which contain more accurate information about the 3D 

environment. 

The main function of a navigation mesh is to represent the 

free environment efficiently in order to allow path queries 

to be computed in optimal times and to support other spatial 

queries useful for navigation. NavMesh has some properties 

that are listed below: 

 Linear number of cells. A navigation mesh must 

represent the environment with O(n) number of 

cells or nodes n for efficient path calculations. 

This is critical for path search to run in optimal 

times. 

 Quality paths. A navigation mesh must facilitate 

the computation of quality paths. At least, locally 

shortest paths must be provided. 

 
1 The 3D model representations were performed using the Recast navigation 

Tool. [7]. 

 Arbitrary clearance. A navigation mesh must 

provide an efficient mechanism for computing 

paths with arbitrary clearance from obstacles. No 

pre-computed clearance valued must be known. 

 Representation robustness. A navigation mesh 

must be robust to degeneracies in the description 

of the environment. Each description of obstacles 

must be handled such as intersections, overlaps, 

etc. 

 Dynamic updates. A navigation mesh must 

efficiently update itself to accommodate dynamic 

changes in the environment. 

An example of the world representations are shown the 

Fig. 5. 1 

B. Hierarchical Subdivision 

There has been some research recently focused on 

hierarchical path finding techniques using the A star algorithm 

such as HPA* [17] which is based on grid maps and clustering. 

HPA* creates an abstract graph from a grid in order to minimize 

the complexity of the problem. This abstract graph is built by 

dividing the environment into squares clusters connected by 

entrances. Basically, the algorithm has two steps: the pre-

processing step where the grids are grouped in a cluster with a 

user defined size. These clusters will be the nodes of the high 

level graph. Then, the entrances (connections between two 

clusters) are placed with one or two transitions. 

The clusters are connected with inter-edges with cost 1.0 and 

the cost of intra-edges are calculated running regular A* [8] 

searches inside each cluster, for all pairs of abstract nodes that 

shared the same cluster. The second step is the online search 

which inserts the start and goal nodes into the abstract graph 

and searches the optimal path with A* between them. The low 

level graph is much smaller than the original one. This approach 

is only based on grids. Finally, HPA* softs the path in an 

 
 

Fig. 4.  Voronoi-Based Roadmaps: Retract PRM (nodes and edges) to the      
medial axis.  

 
 

Fig. 5.  Representations of the environment division. Empty map a). Regular 

Grid map b). Roadmap c). NavMesh d).  
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attempt to undo some of the error introduced with the merging 

of cluster border vertices. However, the final path is still not 

optimal. Since the abstract graph is much smaller than the 

original graph, search problems can be greatly simplified by 

using the abstract graph instead of the low level one. This 

algorithm is the based for the hierarchical approaches. However 

it only works on grids. 

Another similar method based in HPA* but taking into 

account the size of the agents and terrain traversal capabilities 

is Hierarchical Annotated A* (HAA*) [19]. Basically, it is an 

extension of HPA* which allow multi-size agents to efficiently 

plan high quality paths in heterogeneous-terrain environments. 

Each agent has a size property and a capability (ability to walk 

in a certain type of terrain). The clearance values (See Fig. 6) 

which is the size of maximum traversal area at each octile (cell 

in the grid) is calculated for each capability. The clearance 

values for different type of terrain are shown in the Fig. 6. 

In order to find the shortest path, an adaptable A* is 

performed by taking into account the size and capability of each 

agent. It means the nodes with a clearance value greater than 

the size will be expanded.  The path planning is done over an 

abstract graph which is created in the same way as HPA* [17]. 

The entrances between clusters, inter-edges, intra-edges are 

calculated considering the agent properties. 

C. Path finding algorithms 

Current state-of-the-art real time path finding algorithms try 

to improve the performance measures described in (Russell and 

Norvig, 2003, page 71) in order to guarantee a constant bound 

on response time. These measures are: 

 Completeness: Whether or not a route is found, if 

one exists. 

 Optimality. Whether or not the best path is found. 

 Time complexity: Number of iterations to reach the 

goal. 

 Space complexity: Maximum number of nodes 

stored in memory at each iteration. 

In order to do path planning, the representation of the 

environment need to be discretized to facilitate efficient path 

finding queries. Then, efficient planning algorithms need to be 

developed in order to be able to generate solutions with strict 

time constraints for extremely large and complex problem 

domains. 

The most known and popular dynamic search algorithm is 

A* search [8]. It is robust and simple to implement, with strict 

guarantees on optimality and completeness of solution. Hence, 

it represents a popular and widely used method for path 

planning in virtual environments. The A* algorithm uses a 

heuristic to restrict the number of states that must be evaluated 

before finding the true optimal path. It guarantees to expand an 

equal number or fewer states than any other algorithm using the 

same heuristic. A* may be too slow. Its memory use is also 

variable and may be high depending on the size of its opened 

and closed lists and the heuristic function used. 

Also, Anytime Planning algorithms find the best suboptimal 

plan and iteratively improve this plan while reusing previous 

plan efforts. One of the most popular A* is called Anytime 

Repairing A* (ARA*) [9]. It performs a series of repeated 

weighted A* searches while iteratively decreasing a loose 

bound (ε). Then, it iteratively improves the solution by reducing 

ε and reusing previous plan efforts to accelerate subsequent 

searches. The key to reusing previous plan efforts is keeping 

track of over-consistent states. ARA* solution is no longer 

guaranteed to be optimal. 

Furthermore, Incremental planning algorithms try to reuse 

the results of the previous plan calculation in order to reduce 

the planning effort. It also helps to compute the new plan when 

there is a small change in the environment. One common 

replanning method is presented in [10]. D* Lite performs A* to 

generate an initial solution, and repairs its previous solution to 

accommodate world changes by reusing as much of its previous 

search efforts as possible. D* can correct "mistakes" without re-

planning from scratch but requires more memory. 

Finally, Anytime Dynamic A* (AD*) [11] combines the 

properties of D* and ARA* to provide a planning solution that 

meets strict time constraints. It efficiently updates its solutions 

to accommodate dynamic changes in the environment. These 

updates are performed by series of repeated searches by 

iteratively decreasing the inflation factor. AD* cannot handle 

dynamic changes in goal. 

III. HIERARCHICAL PATH FINDING 

This method is based in the HPA* algorithm described in the 

previous section. In order to apply this approach, an initial 

discretization is needed of the 3D world, and navigation meshes 

are the most accurate for this purpose.  

One advantage of using navigation meshes in comparison 

with grid approaches, is that the number of cells is much smaller 

and thus the initial graph abstraction is smaller.  

A. NavMesh division 

Many tools have been proposed for a NavMesh subdivision. 

 
 

Fig. 6.  Clearance Values: (a) - (d) Computing clearance; the square is    

expanded until a hard obstacle is encountered. (e) - (g) Clearance values for 

different capabilities. 

 
 

Fig. 7.  Recast Tool software. (Model: Tropical Islands (12666 polygons)). 
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Recast Tool is an automatic open-source navigation mesh 

generator toolset for games [7]. The automatic NavMesh 

generation is done via Watershed Partitioning which creates a 

robust triangulation without overlaps and holes. This method 

used by Recast is inspired by the work by Haumont [12]. It is 

automatic, which means that any geometry can be as an input 

and it will output a robust mesh. It is also fast which means 

swift turnaround times for level designers. Recast tool also 

provides an optimized A* implementation into Detour project 

classes [7]. Fig. 7 shows the tool.2 

  

Recast tool generates a NavMesh from a triangle soup. It 

receives an arbitrary polygon soup with triangles marked as 

walkable. The reconstruction is done in the preprocessing step 

of the algorithm and it is divided as follows: 

 

1) Voxelize the polygons 

The voxel mold is built from the input triangle mesh by 

rasterizing the triangles into a multi-layer heightfield. This 

process makes the method robust against degeneracies of 

the model (such as interpenetrating geometry, cracks or 

holes) as well as simplifies the furniture of the scene. 

 

2) Build navigable space from solid voxels 

Some simple filters are applied to the voxel mold to prune 

out locations where the character would not be able to move, 

for instance: too steep slopes, too low places, etc. This is 

done by calculating the distance and the slope in each voxel. 

(See Fig. 8). 

3) Build watershed partitioning and filter out unwanted 

regions 

The Watershed Transform [13] finds the catchment basins 

 
2 All the test models were obtained using http://tf3dm.com/ 

by building the distance transform of the input areas. It starts 

from the highest distance one slide at time. Then, it finds 

any new catchment basins and it fills them with a new ID. 

Finally, it expands existing regions. The catchment basins 

become the centers of the regions (see Fig. 9). Then, a filter 

pass is applied to remove small unconnected regions and 

merge small regions together. The result is a set of 

nonoverlapping simple regions that can be used as basis for 

generating waypoint graphs. 

4) Trace and simplify region contours 

It searches the contours by finding a starting point to start 

tracing (region edge cell). Then it traces around the 

boundaries of the regions. The cell corner points which will 

form the polygon and the neighbor region ID are stored. 

Finally, the contours are simplified using Ramer-Douglas-

Peucker algorithm [14]. The algorithm finds initial 

segments and locks vertices which are between two 

different regions, if the region is not connected, it locks two 

extreme vertices. The algorithm iterates through all 

simplified segments and subdivides the segment at the point 

with maximum distance error between the vertex and the 

segment. The initial vertices allow later to find common 

edges between the polygons. (See Fig. 10). The result is a 

set of simple polygons. (See Fig. 11). 

5) Triangulate the region polygons and build triangle 

connectivity 

Recast uses a modified algorithm from Computational 

 
 

Fig. 12.  Triangulation. 

 
Fig. 8.  Build navigable space from solid voxels: Voxelization with walkable 

cells marked (a) and walkable cells overlayed on top of input geometry (b). 

 
Fig. 10.  Ramer-Douglas-Peucker algorithm: Initial vertices at region edges 

(a); Find vertex with maximum error, and subdivide (b); Iterate until certain 

error criteria is met (c). 

 
Fig. 11.  Contours: Traced contours (a); Simplified contours (b). 

 
 

Fig. 9.  Build watershed partitioning and filter out unwanted regions: The 
catchment basins become the centers of the regions. (White areas represent 

lower region). 

 
 

Fig. 9.  Build watershed partitioning and filter out unwanted regions: The 
catchment basins become the centers of the regions. (White areas represent 

lower region). 
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Geometry in C for the triangulation of the polygons. The 

final step is to combine the triangles and find edge 

connectivity. The resulting polygons are finally converted 

to convex polygons which makes them perfect for path 

finding and spatial reasoning about the level. See Fig. 12.  

These five steps are illustrated in the Fig. 13. Recast is 

suitable for complex indoors and outdoors scenes with 

many levels. However, it generates walkable areas where 

the agents cannot even reach (see Fig. 14). This is due to 

Recast only taking into account the characteristics of the 

geometry enclosed by the voxels. It does not consider the 

connectivity between potentially walkable polygons. This is 

a problem because the resulting navigation mesh is consider 

as the initial graph located in the lowest level of the 

hierarchy. All of these unreachable regions are deleted 

during the preprocessing step in this approach. 

Once the spatial partition has been done by the Recast tool, 

the creation of the initial graph is performed. The method 

has mainly two steps: 

 Hierarchical Subdivision. This is done in the 

preprocessing part. The hierarchy of graphs is 

created. The graph in the lowest level is given by 

the Triangulation in the Recast tool. 

 Path finding computation. Given any level in the 

precomputed hierarchy, the path finding is 

calculated over the graph in that level. 

B. Hierarchical Subdivision 

The first step is to build the framework for hierarchical 

searches that is defined as a tree of graphs. The lowest graph of 

the hierarchy (G0= (V0, E0)) is computed by searching the 

polygons in the Recast triangulation. Each polygon becomes a 

new node of the graph. For each near polygon that shares the 

common border, an edge is created between them. See Fig. 15. 

Once the lowest level graph is created, the upper levels of 

the hierarchy are recursively built by partitioning each level 

until it reaches either the minimum number of the nodes in 

a graph or a certain threshold (maximum number of levels). 

The number of nodes which will be merged in each step is 

defined by the user. 

In order to obtain an efficient subdivision of each graph, 

the k-way multilevel algorithm (MLkP) [15] is used to 

reduce the size of the graph by collapsing vertices and 

edges. This algorithm is faster than others multilevel 

recursive bisection algorithms. The process is described as 

follows: 

First of all, a series of successively smaller graphs is 

derived from the input graph, this is called "coarsening 

phase". Here, the size of the graph is successively 

decreased. Each graph is constructed from the previous 

graph by collapsing together a maximal size set of adjacent 

pairs of vertices. In order to have good partitions, the weight 

of a new vertex should be equal to the sum of its previous 

vertices. Also, the new edges are the union of the edges of 

its previous vertices to preserve the connectivity 

information in the coarser graph. The coarsening phase ends 

when the coarsest graph has a small number of vertices or if 

the reduction in the size of successively coarser graphs 

becomes too small. 

After the coarsening phase, a k-way partitioning of the 

smallest graph is computed (initial partitioning phase). It is 

 
Fig. 15.  Hierarchical Subdivision: The NavMesh triangulation of the model 

(a). The graph of the lowest level (level 0) (b). Nodes are painted in 

different colors. Edges connects a node with its neighbors (Model: 

Dungeon (120 polygons)). 

 
 

Fig. 13.  Recast steps (from left to right): Input mesh and the five steps of 

Recast process. (Model: Scifi City (2090 polygons) 

  
 

Fig. 14.  Recast tool: Unreachable walkable areas. (Model: Scifi City (2090 

polygons)). 
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performed by using a multilevel bisection algorithm [15]. 

Each partition contains roughly |𝑉0| 𝑘⁄  vertex weight of the 

original graph. The division is done by Kernighan–Lin (KL) 

partitioning algorithm [16] which finds a partition of a node 

into two disjoint subsets of equal size, such that the sum of 

the weights of the edges between those subsets is 

minimized. 

Finally, in the uncoarsening phase, the partitioning of the 

smallest graph is projected to the successively larger graphs 

by refining the partitioning at each intermediate level. It 

assigns the pairs of vertices that were collapsed together to 

the same partition as that of their corresponding collapsed 

vertex. After each projection step, the partitioning is refined 

using various heuristic methods to iteratively move vertices 

between partitions as long as such moves improve the 

quality of the partitioning solution. The uncoarsening phase 

ends when the partitioning solution has been projected all 

the way to the original graph. 

The three phases of the multilevel paradigm are illustrated 

in Fig. 16.  

The procedure allows to have partitions which ensures 

high quality edge-cuts. An edge-cut of the partition is 

defined as the number of edges whose incident vertices 

belong to different partitions. All of this operations make 

the algorithm more complex and hard to implement. An 

external implementation is used for this purpose. It is called 

METIS library3. It is a software package for partitioning 

unstructured graphs. It implements a collection of 

multilevel partitioning algorithms and is free only for 

educational and research purposes. 

The algorithm 1 shows the steps of partitioning for each 

graph at each level in the hierarchy. 

 

 
3 METIS has been developed at the Department of Computer Science and 

Engineering at the University of Minnesota and is freely distributed. Its source 
code can downloaded directly from http://www.cs.umn.edu/˜metis, and is also 

 
 

The iteration is done until either it reaches the maximum 

number of levels in the hierarchy (variable $levels$) or the 

graph cannot be subdivided. The number of merged nodes 

per level to create a new partition is defined by the variable 

numMergedNodes. The PartGraphKway function splits the 

parent graph into k parts using a multilevel k-way 

partitioning. The k parameter is given by the numParts 

variable. This function returns the partitions in which the 

parent graph has been divided and that will become in the 

new nodes of the current graph. These partitions need to be 

checked before being part of the new graph. It means that 

for each partition, its subnodes must be linked and must 

have edges. Otherwise the current partition will not be taken 

into account for the next iterations. The new graph is created 

in the buildGraph function. The algorithm 2 illustrates the 

steps required to build a graph for each level. 

Once the partitions are established, the new nodes and 

edges between partitions are created. Each partition has a 

set of portals which depends of the number of edges. A 

portal is the middle point in a common edge between to 

partitions. So, for each pair of portals in the partition, an A* 

is calculated between them in order to get the cost and the 

shortest path. This is called an IntraEdge. Each partition has 

stored the subpath and cost for reaching from one portal to 

another. In the Fig. 17, the partitions, portal and intraedges 

are illustrated. 

included in numerous software distributions for Unix-like operating systems 

such as Linux and FreeBSD. 

 
Fig. 16.  The three phases of multilevel k-way graph partitioning. G0 is the 

input graph, which is the finest graph. Gi+1 is the next level coarser graph 

of Gi. G4 is the coarsest graph. 



16                                                                           LATIN AMERICAN JOURNAL OF COMPUTING - LAJC, VOL II, NO. 1, MAY 2015 

 

 

 

 

 
An example of the hierarchical subdivision step is shown 

in the Fig 18. 

C. Path finding Computation 

Once the hierarchical subdivision is created, the path 

finding computation can be done at any level of the 

hierarchy. The second step consists in searching the shortest 

path from the start node (S) to the goal node (G) in a specific 

graph. This online search brings a performance 

improvement as any graph in the hierarchy is smaller than 

the one in level 0. (See Fig. 22). 

The path finding computation has the following five 

phases: 

1) Find S and G at a certain level 

The first phase of this step gets S and G in a certain level 

in the hierarchy. This level is specified by the user in the 

Recast Tool. The algorithm receives an initial and end 

positions in the NavMesh environment. Then, S and G 

nodes are obtained in the graph at level 0 by searching for 

their positions. Finally, their parents are recursively 

searched by passing through all the levels in between until 

reach the desired level. If S and G nodes are in the same 

partition, a normal A* is run between them and the path 

finding is completed. 

 

2) Connect S and G to the graph 

To be able to search for paths in a graph at certain level, 

Start and Goal nodes have to be part of the graph. A 

temporal Start node is connected to each portal in the 

partition that contains it. Then, an A* is computed between 

S and the center of each portal in the partition. The path 

nodes and costs are stored for each portal. Finally, a new 

intraedge is added between the start node the portal inside 

the current partition. This step is repeated for G in its 

respective partition. (See Fig. 19). 

For each search, S and G should change and the cost of 

inserting and deleting them is added to the total cost of 

finding a solution. 

3) Search for a path between S and G at the highest level 

Once the S and G are temporally linked to the graph, an 

A* search is performed in the current graph. The time 

execution becomes faster because the number of nodes is 

significantly smaller than the graph at level 0. 

 

4) Obtain optimal subpaths 

The path planning computation gives all the partitions 

which are part of the optimal solution. For each of them, the 

path nodes are recursively got for each lower level until the 

lowest level is reached in the hierarchy. At the end, the full 

path is obtained to go from S to G at the level 0. 

 

5) Delete temporal nodes 

The nodes S, G and their intraedges are eliminated from 

the current graph. 

 

The preprocessing step is shown in the Fig. 20, where a 

hierarchical subdivision has been applied on a map model. The 

S and G positions are denoted in white letters. In this sample, 

 
Fig. 17. Hierarchical Subdivision: (Simple map, numMergedNodes = 5, 

levels = 5). Portals are presented with red dots. IntraEdges are painted with 

yellow lines. Partitions are exposed with black, blue and red separation 

lines respectively. Level 0 = 76 nodes (a), Level 1 = 12 nodes (b), Level 

2 = 3 nodes (c). (Model: Simple Map (76 polygons)). 

 
Fig. 18. Hierarchical Graphs: (City Islands, $numMergedNodes = 3, levels 

= 10$). Level 0 = 5151 nodes (a), Level 1 = 1469 nodes (b), Level 2 = 316 
nodes (c), Level 3 = 72 nodes (d), Level 4 = 17 nodes(e), Level 5 = 4 

nodes (f). (Model: City Islands (5515 polygons)). 

 
Fig. 19. Connect Start node to the graph: Blue circles are portals of the 

orange partition. White lines are the computed intraedges. Gray polygons 

are obstacles or no walkable areas. 
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the shortest path is found from S to G at level 2. The online step 

is shown in Fig. 21. The start and goal nodes are connected to 

their respective portals and run a common A* at level 2. Finally 

the sub paths are found until level 0 is reached. 

The complete path from the start to the end position in the 

navigation mesh is achieved in a faster way than computing a 

normal path finding at the level 0. 

IV. RESULTS AND DISCUSSION 

The results were obtained in different models with a variety 

of sizes to measure the improvement achieved with the 

proposed method. The comparison is based on the speed time 

for calculating path finding between the start and goal node. 

Furthermore, the analysis is focused on how the time taken for 

each of the steps affects the total time. Also, the impact is 

explored by varying the number of merged nodes for the 

different levels on the performance of path finding with the 

suggested method. The performance results have been tested on 

an Intel® Core™ i7 processor with NVIDIA® GeForce® 

610M graphics card and 8 GB of RAM. 

A. Performance Test 

The performance tests are based on: the number of nodes in 

each level of the hierarchy and the measure of the execution 

time (milliseconds) of path queries. 

 

1) Number of Nodes 

The number of resulting nodes is compared in each level 

in the hierarchy as the number of merged nodes is increased 

from one level to the next one. It is expected that the higher 

the level, the lower the number of nodes. As an example, the 

Fig. 23 shows the results obtained for the Sirus City. The 

chart shows number of nodes falls steadily over the upper 

levels in the hierarchy until either one partition cannot be 

divided any more or the maximum level has been reached. 

The division does not only depend on the 

numMergedNodes parameter but every time that a partition 

is created. This partition is checked whether it has 

connections (edges) with other partitions. If not, then this 

new nodes are not taken into account for the next level, as 

they cannot be any further merged. Thus, the consecutive 

subdivisions do not have an exact segmentation depending 

exclusively on with the numMergedNodes parameter. 

 

2) Time Execution 

 Firstly, the total time of performing a path finding 

computation was analyzed at different levels against the 

execution time of performing path planning in level 0 (i.e 

without any hierarchy). 

 
Fig. 20. Hierarchical Subdivision (From (a) to (e)). The start and goal nodes 

are written in white. 

 
Fig. 21. Path finding Computation: S and G are linked to their partitions at 

level 2 (a). Sub paths are calculated until level 0 is reached. (Level 1 (b) 
and Level 0 (c)). The final result of the shortest path between S and G at 

level 2 (d). 

 
 

Fig. 23. Level vs Number of Nodes (Sirus City). 

 
Fig. 22. Path finding Computation: (Serpentine Islands, numMergedNodes 

= 4, levels = 10) Path finding at level 0 (3908 nodes) (a). Path finding at 

level 0 where each node has a different color (b). Path finding at level 3 

(28 nodes) (c). 
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The sample model is a map with 2615 nodes in its initial 

graph. This line chart compares the total execution time per 

level in the hierarchy. Each line represents the number of 

merged polys from one level to the next one. To begin, the 

Fig. 24 shows the computation time over City Colony. It can 

be seen clearly that the execution time dramatically falls in 

the first level of the hierarchy. Afterwards, there is a slowly 

improvement depending on the number of merged nodes 2, 

4, and 5 at level two. The other cases have a gentle upward 

trend but still lower than the computation time at level 0. 

The highest value reached is 1.43ms with 

numMergedNodes=14 at level two. In contrast, the fastest 

time is 0.142ms (six time faster) for the case of 5 merged 

nodes in level 2. (See Fig. 25). 

To better understand where the bottlenecks of our 

algorithm appear, the partial times are compared for 

computing the entire online step for each level in the 

hierarchy. The online search has been divided in five steps 

in order to analyze the partial times in this process. See 

algorithm 3. 

 

3) Find S and G at certain level 

 The Fig. 26 illustrates the time of getting the partitions to 

which Start and Goal nodes respectively belong to a certain 

level. Those partitions are obtained by recursively searching 

S and G positions in the upper levels of the hierarchy until 

they reach a predetermined level. Overall, the time has a 

gradual rise in the entire hierarchy. This was expected as the 

higher the level we want to reach, the more time is 

consumed. Notice that the total time for this step is not 

significant in the total time (values less than 0.005 ms). 

4) Connect S and G to the graph 

 The chart shows the time of connecting S and G to each 

of the portals in their respective partitions. S and G are 

linked by performing an A* from those nodes to each portal 

in the current partition. Then, the path nodes and cost are 

 
Fig. 25. City Colony model (a). Shortest path (numMergedNodes = 5, level 

= 2) (b) 

 
 

Fig. 27. Link S and G Time vs Level 

 
 

Fig. 26. Get S and G Time vs Level 

 
 

Fig. 24. Level vs Execution Time (City Colony). 
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stored by adding an intraedge. 

The figure shows an upward trend throughout the levels of 

the hierarchy. It exposes a particular strong growth in the 

highest levels due to the number of portals being bigger in 

the upper levels. (See Fig. 27). This particular behavior is 

due to the fact that we have to execute as many A* searches 

as the number of portals the partition has. 

 

5) Search for a path between S and G at the highest level 

 Regarding the path finding calculation, an A* 

computation is faster when the searching is done in a higher 

level in the hierarchy. A regular A* is performed between 

the start and goal nodes at certain level. The Fig. 28 shows 

the general gradual decline for all the cases. The lower the 

number of nodes, the faster the exploration is. The number 

of nodes in a specific level highly depends on how many 

nodes were merged in its lower level. For instance, for the 

case when mergedPolys = 2 and level=10, the number of 

nodes was 22. The partial time was 1.333ms. When 

mergedPolys = 10 and level = 3, the number of nodes was 

11 with a partial time 0.287ms. 

6) Obtain optimal subpaths 

 The chart 30 shows the time of getting the subpaths for 

each level. The subpaths are obtained by recursively get the 

stored paths in each nodes of the lower levels until we reach 

the level 0. Those subpaths have the nodes which become 

the optimal path at level 0. 

As an overall trend, the time of getting subpaths increased 

fairly slowly until the penultimate level of the hierarchy. 

Then, this time gradual decline in the highest level. This is 

due to there are no nodes between S and k. Also, there are 

not intermediate paths between them. Fig. 29 illustrates this 

scenario. 

Therefore, the execution time is really low and strictly 

depends on the map environment and the number of merged 

nodes. 

 

7) Delete S and G 

Deleting temporal S and G nodes have an insignificant 

time compare to other partial times during the online 

process. 

V. CONCLUSION 

With the booming growth of video games, there is a great 

demand on path finding algorithms. In this method, a new 

hierarchical path finding framework is presented to speed up 

crowd simulation for large 3D environments. The approach has 

two steps: Preprocessing and online search. Preprocessing step 

builds the hierarchy of levels whereas that online process deals 

with the path finding search. The approach has a tree hierarchy 

of graphs where the searching can be performed at any level. 

The main contributions of this approach are: 

 A path planning algorithm for arbitrary graph types 

that could be applied in any kind of 3D world 

representation. 

 A recursive partition of a graph based on reducing 

the connector edges. 

 A hierarchy of graphs to find the fastest time 

execution for path planning. 

The evaluation has shown a significant improvement in path 

finding time execution. The method has better results when the 

path planning is performed in big world representations (5 or 6 

times faster than A*). For small models, a common A* is 

enough. The trade-off between the chosen level and the size of 

partitions is important. Also, the approach shows better 

performance in non-widespread environments. 

The framework presented in this research was inspired by 

HPA* approach but it also provide multi-level search and 

present a new algorithm that works over any kind of 

environment division. 

VI. FUTURE WORK 

Despite the improvements, there is still a large amount of 

work that could be done to obtain either fast path finding 

searches or good path quality. Some of the enhancements that 

 
 

Fig. 30. Time vs Level. 

 
 

Fig. 28. A* Time vs Level 

 
 

Fig. 29. Obtain optimal subpaths. The map model has two nodes at level 3. 

No intermediate paths are calculated. 
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could be incorporated with the current framework. For instance, 

the improvement of linking Start and Goal node to the current 

graph. This is an important issue to address in the future. A way 

of reducing link-time would be to replace A* with a version of 

Dijkstra's algorithm that does not flush the pool of visited 

vertices between searches. Also, those nodes could be somehow 

stored in order to reduce the time execution of connecting and 

deleting. 

It would also be interesting to study if some steps of the 

online search could be parallelized using a GPU 

implementation. For example, the process of linking S and G 

could be performed in separated threads for each portal as well 

as getting the subtpath for each partition. Also, this approach 

could be extended to work under dynamic environments where 

the replanning could be done only at certain level of the 

hierarchy. 
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