
LATIN AMERICAN JOURNAL OF COMPUTING - LAJC, VOL II, NO. 1, MAY 2015

ISSN: 1390-9134 - 2015 LAJC

9

Abstract—Path finding is a common problem in computer

games. Most videogames require to simulate thousands or millions

of agents who interact and navigate in a 3D world showing

capabilities such as chasing, seeking or intercepting other agents.

A new hierarchical path finding solution based on navigation

meshes is proposed in order to minimize the complexity in big

environments. The method has two steps: Firstly, it creates the

hierarchy tree based on a recursive partitioning. Then, the optimal

path is found in the hierarchy at certain level. This approach

performs much faster path finding calculations than a common

A*. These claims are verified on big environments.

Index Terms—A*, crowd simulation, graph algorithms, graph

partitioning, hierarchical path finding, HPA*, navigation meshes,

path planning, Recast, route planning, shortest path search.

Resumen— La búsqueda de ruta es un problema común en los

juegos de computador. La mayoría de los videojuegos requiere

simular miles o millones de agentes que interactúan y navegan en

un mundo 3D mostrando capacidades tales como persecución, la

búsqueda o la intercepción de otros agentes. Se propone una nueva

solución de búsqueda de ruta jerárquica basada en mallas de

navegación con el fin de minimizar la complejidad en entornos

grandes. El método tiene dos etapas: En primer lugar, se crea un

árbol de jerarquía basada en un particionamiento recursivo.

Después, el camino óptimo se encuentra en la jerarquía a cierto

nivel. Este enfoque lleva a cabo cálculos de búsqueda de ruta más

rápido que un A* común. Estas afirmaciones son verificadas en

entornos grandes.

Palabras claves—A*, algoritmos de grafos, búsqueda de ruta

jerárquica, búsqueda de trayectoria más corta, HPA*, mallas de

navegación, partición de grafos, planificación de trayectorias,

Recast, simulación de multitudes.

I. INTRODUCTION

ATH finding is a common problem in computer games.

Most videogames require to simulate thousands or millions

of agents who interact and navigate in a 3D world showing

capabilities such as chasing, seeking or intercepting other

agents. This behavior is solved using path finding. A* is the

most commonly used method to determine the shortest path

between two points. It expands the nodes in the graph

representation of the environment with the smallest estimated

This paper was submitted by corresponding author on 13 February 2015 for

review. This work was supported in part by the MOVING research group in the

Polytechnic University of Catalonia.

solution cost first; however the cost of this search can grow

exponentially with the size of the terrain and the allocated

memory is very limited. Therefore, a hierarchical subdivision

of the world environment is necessary under those restraints.

 Hierarchical path finding has been studied in the last decade,

it allows to compute the shortest and optimal route between two

locations in large terrains based on a hierarchical graph. This

significantly decreases the execution time and memory

footprint in crowd simulation environments. Many of these

approaches only have one abstract graph to work on. It means,

the searches are just done on one abstract level of the

environment subdivision. These approaches have been only

applied in 3D environments based on regular grids.

 This new method proposes a new hierarchical path finding

solution for big environments. A navigation mesh is used as

abstract data structure to partition the 3D world. Then, a graph

representation is extracted and considered it as the level 0 in a

hierarchical tree. After, many subdivisions are created by

recursively partitioning a lower level graph into a specific

number of nodes. The number of nodes is a parameter. The

partition is performed until the graph of the latest level cannot

be divided. Thus, a particular path planning search can be

executed in any level of this hierarchical tree. The higher the

level of the hierarchy, the fewer the number of nodes to search

in. This approach allows faster path finding calculations than a

common A* without any hierarchy.

II. RELATED WORK

Many path finding algorithms have been studied for more

than a decade, all of which attempt to balance the inherent

tradeoff between two criteria, namely the path planning runtime

computation and the resulting path quality.

The computational cost depends on how the scenario is

divided (based on grids, waypoints or navigation meshes) and

whether the navigation environment is fully static or dynamic,

where a complex replanning may be required on the fly in order

to get the correct path.

At present, a hierarchy of graphs is applied to reduce the

computational calculation known as hierarchical path finding,

where the idea is to decompose the search problem into multiple

searches on smaller graphs and to cache information about path

segments that are shared by many routes. The higher the level

The author, was with Polytechnic University of Catalonia, Barcelona, Spain.

He is now an employee in ThoughtWorks (e-mail:

cfuentes@thoughtworks.com).

Hierarchical Path Finding to Speed up Crowd

Simulation using Navigation Meshes

Carlos Fuentes

P

10 LATIN AMERICAN JOURNAL OF COMPUTING - LAJC, VOL II, NO. 1, MAY 2015

the graph belongs to, the smaller the number of nodes the graph

has.

A. Environment Division

In videogames and artificial intelligence fields, the 3D world

environment could be characterized as a weighted direct graph.

There are well known structures suitable for fast path planning

calculation. These spatial divisions allow fast searches for

collision-free paths, but which are not necessarily globally the

shortest ones. The most common environment representations

are regular grids, roadmaps, and navigation meshes (NavMesh).

1) Regular Grids

 Regular grids are the simplest way to represent the 3D

world. This regular cell grid is commonly used for both

global and local paths of agents. The scenario is divided

into a two dimensional square cells with the same size. Each

cell can have two states: opened or blocked. An opened cell

is the space where the character can stand or move in, a

blocked one is not accessible for the character because there

are obstacles or walls. However, more than two states can

be stored in a cell such as density, percentage of occupancy,

etc. In the method proposed by Loscos [1], they store more

than two states in each cell of a regular grid. Each cell has

local information for collision of the environment and

agents in order to improve the realism of the simulation. It

also can be extended for creating more complex agent-

environment behaviors using different layers [2], [3].

A navigation graph can be extracted from the regular grid

by using the connectivity information between cells. Each

node in the graph represents a cell and an edge the link

between two cells. (See Fig. 1).

If the virtual world is small and grid-like, this technique is

useful. Also, this approach is ideal for 2D terrains where the

height of the character is not relevant. Moreover, the

resolution of the grid determines how accurate it represents

the walkable space. However, the memory cost becomes

unacceptable when the number of cells is extremely high for

a regular grid with enough resolution. The idea of

partitioning the world representation in cells with big sizes

in order to mitigate this problem could affect the path

quality.

Other limitation of working on grids is the coarse coverage

of underlying terrain, it means that one big cell could cover

both walkable and obstacle area. It should classified as

either walkable or obstacle under some criterion. Also, the

paths do not look realistic because of the agent movement

is only restricted to do fixed angle turns. Motions created by

grid search tend to be unnatural because, for grid searches,

a path smoothing step needs to be applied in the post-

processing phase resulting in expensive queries. (See Fig.

2).

Therefore, using large grids that are composed for

thousands of cells could easily exceed the memory

requirements of the current high-end hardware provides.

Moreover the preprocessing time of calculating the

extracted graph becomes impractically large with the

growing number of cells. All of these limitation make a grid

representation not suitable for big environments.

2) Roadmaps

The Probabilistic Roadmap Planner (PRM) [4], [5] is a

planner that can compute collision-free paths. The PRM

consists of two phases: a construction phase (off-line) and a

query phase (on-line). In the construction phase, a roadmap

is built, it consists of computing a very simplified

representation of the free space by sampling configurations

at random. Then the sampled configurations are tested for

collision and each collision-free configuration is retained as

a "milestone". Each milestone is linked by straight paths to

its k-nearest neighbors. Finally the collision-free links will

form the PRM.

Sampled configurations and connections are added to the

roadmap until the roadmap is dense enough. A roadmap is

normally represented as a graph in which the nodes

correspond to placements of the entity and the edges

represent collision-free paths between these placements.

In the query phase, the start and goal configurations are

connected to the roadmap. Then, the path can be obtained

by a Dijkstra shortest path query. (See Fig. 3).

A roadmap can also use a Voronoi diagram classifier [6].

The Voronoi diagram is one of the most popular structure

Fig. 1. Regular Grid Extraction with two states: World environment (a).

Extracted graph for the upper part of the grid (blue nodes have opened
state and red nodes have blocked state) (b).

Fig. 2. Limitations of Grid Methods: Walkable and obstacle area inside the

same cell (a). Restricted movement (fixed angles) (b).

Fig. 3. Probabilistic Roadmap Planner: Connect Start and Goal node to the

roadmap.

FUENTES C: HIERARCHICAL PATH FINDING TO SPEED UP CROWD SIMULATION USING NAVIGATION MESHES

11

for spatial partitioning. Given seed points, it will partition

the plane in cells such that for each seed there will be a

corresponding cell consisting of all points closer to that seed

than to any other.

In order to calculate the seeds, a random sample is picked

of the entity (placement) in each iteration. Then, the

placement is checked whether collision free from the entity

is. If so, it is retracted to the Voronoi diagram using binary

interpolation. Finally, the edges are also retracted until

every part of the edge is at least some pre-specified distance

away from the obstacles. (See Fig. 4).

Unfortunately, the PRM method leads to low quality

roadmaps, consisting of straight line segments that require

a lot of time-consuming smoothing in order to be useful for

virtual world applications. This is due to the random nature

of the PRM method. Also, it drives to larger graphs when

many milestones are needed.

3) Navigation Meshes

Navigation Meshes (NavMesh) is a data structure that is

specifically designed for supporting path planning and

navigation computations. It encodes a convex

decomposition of the scene where each convex polygon

(nodes) is a walkable area and they are connected using

links (edges) that provide the connection between cells for

agents to walk through. This representation has few nodes

which contain more accurate information about the 3D

environment.

The main function of a navigation mesh is to represent the

free environment efficiently in order to allow path queries

to be computed in optimal times and to support other spatial

queries useful for navigation. NavMesh has some properties

that are listed below:

 Linear number of cells. A navigation mesh must

represent the environment with O(n) number of

cells or nodes n for efficient path calculations.

This is critical for path search to run in optimal

times.

 Quality paths. A navigation mesh must facilitate

the computation of quality paths. At least, locally

shortest paths must be provided.

1 The 3D model representations were performed using the Recast navigation

Tool. [7].

 Arbitrary clearance. A navigation mesh must

provide an efficient mechanism for computing

paths with arbitrary clearance from obstacles. No

pre-computed clearance valued must be known.

 Representation robustness. A navigation mesh

must be robust to degeneracies in the description

of the environment. Each description of obstacles

must be handled such as intersections, overlaps,

etc.

 Dynamic updates. A navigation mesh must

efficiently update itself to accommodate dynamic

changes in the environment.

An example of the world representations are shown the

Fig. 5. 1

B. Hierarchical Subdivision

There has been some research recently focused on

hierarchical path finding techniques using the A star algorithm

such as HPA* [17] which is based on grid maps and clustering.

HPA* creates an abstract graph from a grid in order to minimize

the complexity of the problem. This abstract graph is built by

dividing the environment into squares clusters connected by

entrances. Basically, the algorithm has two steps: the pre-

processing step where the grids are grouped in a cluster with a

user defined size. These clusters will be the nodes of the high

level graph. Then, the entrances (connections between two

clusters) are placed with one or two transitions.

The clusters are connected with inter-edges with cost 1.0 and

the cost of intra-edges are calculated running regular A* [8]

searches inside each cluster, for all pairs of abstract nodes that

shared the same cluster. The second step is the online search

which inserts the start and goal nodes into the abstract graph

and searches the optimal path with A* between them. The low

level graph is much smaller than the original one. This approach

is only based on grids. Finally, HPA* softs the path in an

Fig. 4. Voronoi-Based Roadmaps: Retract PRM (nodes and edges) to the
medial axis.

Fig. 5. Representations of the environment division. Empty map a). Regular

Grid map b). Roadmap c). NavMesh d).

12 LATIN AMERICAN JOURNAL OF COMPUTING - LAJC, VOL II, NO. 1, MAY 2015

attempt to undo some of the error introduced with the merging

of cluster border vertices. However, the final path is still not

optimal. Since the abstract graph is much smaller than the

original graph, search problems can be greatly simplified by

using the abstract graph instead of the low level one. This

algorithm is the based for the hierarchical approaches. However

it only works on grids.

Another similar method based in HPA* but taking into

account the size of the agents and terrain traversal capabilities

is Hierarchical Annotated A* (HAA*) [19]. Basically, it is an

extension of HPA* which allow multi-size agents to efficiently

plan high quality paths in heterogeneous-terrain environments.

Each agent has a size property and a capability (ability to walk

in a certain type of terrain). The clearance values (See Fig. 6)

which is the size of maximum traversal area at each octile (cell

in the grid) is calculated for each capability. The clearance

values for different type of terrain are shown in the Fig. 6.

In order to find the shortest path, an adaptable A* is

performed by taking into account the size and capability of each

agent. It means the nodes with a clearance value greater than

the size will be expanded. The path planning is done over an

abstract graph which is created in the same way as HPA* [17].

The entrances between clusters, inter-edges, intra-edges are

calculated considering the agent properties.

C. Path finding algorithms

Current state-of-the-art real time path finding algorithms try

to improve the performance measures described in (Russell and

Norvig, 2003, page 71) in order to guarantee a constant bound

on response time. These measures are:

 Completeness: Whether or not a route is found, if

one exists.

 Optimality. Whether or not the best path is found.

 Time complexity: Number of iterations to reach the

goal.

 Space complexity: Maximum number of nodes

stored in memory at each iteration.

In order to do path planning, the representation of the

environment need to be discretized to facilitate efficient path

finding queries. Then, efficient planning algorithms need to be

developed in order to be able to generate solutions with strict

time constraints for extremely large and complex problem

domains.

The most known and popular dynamic search algorithm is

A* search [8]. It is robust and simple to implement, with strict

guarantees on optimality and completeness of solution. Hence,

it represents a popular and widely used method for path

planning in virtual environments. The A* algorithm uses a

heuristic to restrict the number of states that must be evaluated

before finding the true optimal path. It guarantees to expand an

equal number or fewer states than any other algorithm using the

same heuristic. A* may be too slow. Its memory use is also

variable and may be high depending on the size of its opened

and closed lists and the heuristic function used.

Also, Anytime Planning algorithms find the best suboptimal

plan and iteratively improve this plan while reusing previous

plan efforts. One of the most popular A* is called Anytime

Repairing A* (ARA*) [9]. It performs a series of repeated

weighted A* searches while iteratively decreasing a loose

bound (ε). Then, it iteratively improves the solution by reducing

ε and reusing previous plan efforts to accelerate subsequent

searches. The key to reusing previous plan efforts is keeping

track of over-consistent states. ARA* solution is no longer

guaranteed to be optimal.

Furthermore, Incremental planning algorithms try to reuse

the results of the previous plan calculation in order to reduce

the planning effort. It also helps to compute the new plan when

there is a small change in the environment. One common

replanning method is presented in [10]. D* Lite performs A* to

generate an initial solution, and repairs its previous solution to

accommodate world changes by reusing as much of its previous

search efforts as possible. D* can correct "mistakes" without re-

planning from scratch but requires more memory.

Finally, Anytime Dynamic A* (AD*) [11] combines the

properties of D* and ARA* to provide a planning solution that

meets strict time constraints. It efficiently updates its solutions

to accommodate dynamic changes in the environment. These

updates are performed by series of repeated searches by

iteratively decreasing the inflation factor. AD* cannot handle

dynamic changes in goal.

III. HIERARCHICAL PATH FINDING

This method is based in the HPA* algorithm described in the

previous section. In order to apply this approach, an initial

discretization is needed of the 3D world, and navigation meshes

are the most accurate for this purpose.

One advantage of using navigation meshes in comparison

with grid approaches, is that the number of cells is much smaller

and thus the initial graph abstraction is smaller.

A. NavMesh division

Many tools have been proposed for a NavMesh subdivision.

Fig. 6. Clearance Values: (a) - (d) Computing clearance; the square is

expanded until a hard obstacle is encountered. (e) - (g) Clearance values for

different capabilities.

Fig. 7. Recast Tool software. (Model: Tropical Islands (12666 polygons)).

FUENTES C: HIERARCHICAL PATH FINDING TO SPEED UP CROWD SIMULATION USING NAVIGATION MESHES

13

Recast Tool is an automatic open-source navigation mesh

generator toolset for games [7]. The automatic NavMesh

generation is done via Watershed Partitioning which creates a

robust triangulation without overlaps and holes. This method

used by Recast is inspired by the work by Haumont [12]. It is

automatic, which means that any geometry can be as an input

and it will output a robust mesh. It is also fast which means

swift turnaround times for level designers. Recast tool also

provides an optimized A* implementation into Detour project

classes [7]. Fig. 7 shows the tool.2

Recast tool generates a NavMesh from a triangle soup. It

receives an arbitrary polygon soup with triangles marked as

walkable. The reconstruction is done in the preprocessing step

of the algorithm and it is divided as follows:

1) Voxelize the polygons

The voxel mold is built from the input triangle mesh by

rasterizing the triangles into a multi-layer heightfield. This

process makes the method robust against degeneracies of

the model (such as interpenetrating geometry, cracks or

holes) as well as simplifies the furniture of the scene.

2) Build navigable space from solid voxels

Some simple filters are applied to the voxel mold to prune

out locations where the character would not be able to move,

for instance: too steep slopes, too low places, etc. This is

done by calculating the distance and the slope in each voxel.

(See Fig. 8).

3) Build watershed partitioning and filter out unwanted

regions

The Watershed Transform [13] finds the catchment basins

2 All the test models were obtained using http://tf3dm.com/

by building the distance transform of the input areas. It starts

from the highest distance one slide at time. Then, it finds

any new catchment basins and it fills them with a new ID.

Finally, it expands existing regions. The catchment basins

become the centers of the regions (see Fig. 9). Then, a filter

pass is applied to remove small unconnected regions and

merge small regions together. The result is a set of

nonoverlapping simple regions that can be used as basis for

generating waypoint graphs.

4) Trace and simplify region contours

It searches the contours by finding a starting point to start

tracing (region edge cell). Then it traces around the

boundaries of the regions. The cell corner points which will

form the polygon and the neighbor region ID are stored.

Finally, the contours are simplified using Ramer-Douglas-

Peucker algorithm [14]. The algorithm finds initial

segments and locks vertices which are between two

different regions, if the region is not connected, it locks two

extreme vertices. The algorithm iterates through all

simplified segments and subdivides the segment at the point

with maximum distance error between the vertex and the

segment. The initial vertices allow later to find common

edges between the polygons. (See Fig. 10). The result is a

set of simple polygons. (See Fig. 11).

5) Triangulate the region polygons and build triangle

connectivity

Recast uses a modified algorithm from Computational

Fig. 12. Triangulation.

Fig. 8. Build navigable space from solid voxels: Voxelization with walkable

cells marked (a) and walkable cells overlayed on top of input geometry (b).

Fig. 10. Ramer-Douglas-Peucker algorithm: Initial vertices at region edges

(a); Find vertex with maximum error, and subdivide (b); Iterate until certain

error criteria is met (c).

Fig. 11. Contours: Traced contours (a); Simplified contours (b).

Fig. 9. Build watershed partitioning and filter out unwanted regions: The
catchment basins become the centers of the regions. (White areas represent

lower region).

Fig. 9. Build watershed partitioning and filter out unwanted regions: The
catchment basins become the centers of the regions. (White areas represent

lower region).

14 LATIN AMERICAN JOURNAL OF COMPUTING - LAJC, VOL II, NO. 1, MAY 2015

Geometry in C for the triangulation of the polygons. The

final step is to combine the triangles and find edge

connectivity. The resulting polygons are finally converted

to convex polygons which makes them perfect for path

finding and spatial reasoning about the level. See Fig. 12.

These five steps are illustrated in the Fig. 13. Recast is

suitable for complex indoors and outdoors scenes with

many levels. However, it generates walkable areas where

the agents cannot even reach (see Fig. 14). This is due to

Recast only taking into account the characteristics of the

geometry enclosed by the voxels. It does not consider the

connectivity between potentially walkable polygons. This is

a problem because the resulting navigation mesh is consider

as the initial graph located in the lowest level of the

hierarchy. All of these unreachable regions are deleted

during the preprocessing step in this approach.

Once the spatial partition has been done by the Recast tool,

the creation of the initial graph is performed. The method

has mainly two steps:

 Hierarchical Subdivision. This is done in the

preprocessing part. The hierarchy of graphs is

created. The graph in the lowest level is given by

the Triangulation in the Recast tool.

 Path finding computation. Given any level in the

precomputed hierarchy, the path finding is

calculated over the graph in that level.

B. Hierarchical Subdivision

The first step is to build the framework for hierarchical

searches that is defined as a tree of graphs. The lowest graph of

the hierarchy (G0= (V0, E0)) is computed by searching the

polygons in the Recast triangulation. Each polygon becomes a

new node of the graph. For each near polygon that shares the

common border, an edge is created between them. See Fig. 15.

Once the lowest level graph is created, the upper levels of

the hierarchy are recursively built by partitioning each level

until it reaches either the minimum number of the nodes in

a graph or a certain threshold (maximum number of levels).

The number of nodes which will be merged in each step is

defined by the user.

In order to obtain an efficient subdivision of each graph,

the k-way multilevel algorithm (MLkP) [15] is used to

reduce the size of the graph by collapsing vertices and

edges. This algorithm is faster than others multilevel

recursive bisection algorithms. The process is described as

follows:

First of all, a series of successively smaller graphs is

derived from the input graph, this is called "coarsening

phase". Here, the size of the graph is successively

decreased. Each graph is constructed from the previous

graph by collapsing together a maximal size set of adjacent

pairs of vertices. In order to have good partitions, the weight

of a new vertex should be equal to the sum of its previous

vertices. Also, the new edges are the union of the edges of

its previous vertices to preserve the connectivity

information in the coarser graph. The coarsening phase ends

when the coarsest graph has a small number of vertices or if

the reduction in the size of successively coarser graphs

becomes too small.

After the coarsening phase, a k-way partitioning of the

smallest graph is computed (initial partitioning phase). It is

Fig. 15. Hierarchical Subdivision: The NavMesh triangulation of the model

(a). The graph of the lowest level (level 0) (b). Nodes are painted in

different colors. Edges connects a node with its neighbors (Model:

Dungeon (120 polygons)).

Fig. 13. Recast steps (from left to right): Input mesh and the five steps of

Recast process. (Model: Scifi City (2090 polygons)

Fig. 14. Recast tool: Unreachable walkable areas. (Model: Scifi City (2090

polygons)).

FUENTES C: HIERARCHICAL PATH FINDING TO SPEED UP CROWD SIMULATION USING NAVIGATION MESHES

15

performed by using a multilevel bisection algorithm [15].

Each partition contains roughly |𝑉0| 𝑘⁄ vertex weight of the

original graph. The division is done by Kernighan–Lin (KL)

partitioning algorithm [16] which finds a partition of a node

into two disjoint subsets of equal size, such that the sum of

the weights of the edges between those subsets is

minimized.

Finally, in the uncoarsening phase, the partitioning of the

smallest graph is projected to the successively larger graphs

by refining the partitioning at each intermediate level. It

assigns the pairs of vertices that were collapsed together to

the same partition as that of their corresponding collapsed

vertex. After each projection step, the partitioning is refined

using various heuristic methods to iteratively move vertices

between partitions as long as such moves improve the

quality of the partitioning solution. The uncoarsening phase

ends when the partitioning solution has been projected all

the way to the original graph.

The three phases of the multilevel paradigm are illustrated

in Fig. 16.

The procedure allows to have partitions which ensures

high quality edge-cuts. An edge-cut of the partition is

defined as the number of edges whose incident vertices

belong to different partitions. All of this operations make

the algorithm more complex and hard to implement. An

external implementation is used for this purpose. It is called

METIS library3. It is a software package for partitioning

unstructured graphs. It implements a collection of

multilevel partitioning algorithms and is free only for

educational and research purposes.

The algorithm 1 shows the steps of partitioning for each

graph at each level in the hierarchy.

3 METIS has been developed at the Department of Computer Science and

Engineering at the University of Minnesota and is freely distributed. Its source
code can downloaded directly from http://www.cs.umn.edu/˜metis, and is also

The iteration is done until either it reaches the maximum

number of levels in the hierarchy (variable $levels$) or the

graph cannot be subdivided. The number of merged nodes

per level to create a new partition is defined by the variable

numMergedNodes. The PartGraphKway function splits the

parent graph into k parts using a multilevel k-way

partitioning. The k parameter is given by the numParts

variable. This function returns the partitions in which the

parent graph has been divided and that will become in the

new nodes of the current graph. These partitions need to be

checked before being part of the new graph. It means that

for each partition, its subnodes must be linked and must

have edges. Otherwise the current partition will not be taken

into account for the next iterations. The new graph is created

in the buildGraph function. The algorithm 2 illustrates the

steps required to build a graph for each level.

Once the partitions are established, the new nodes and

edges between partitions are created. Each partition has a

set of portals which depends of the number of edges. A

portal is the middle point in a common edge between to

partitions. So, for each pair of portals in the partition, an A*

is calculated between them in order to get the cost and the

shortest path. This is called an IntraEdge. Each partition has

stored the subpath and cost for reaching from one portal to

another. In the Fig. 17, the partitions, portal and intraedges

are illustrated.

included in numerous software distributions for Unix-like operating systems

such as Linux and FreeBSD.

Fig. 16. The three phases of multilevel k-way graph partitioning. G0 is the

input graph, which is the finest graph. Gi+1 is the next level coarser graph

of Gi. G4 is the coarsest graph.

16 LATIN AMERICAN JOURNAL OF COMPUTING - LAJC, VOL II, NO. 1, MAY 2015

An example of the hierarchical subdivision step is shown

in the Fig 18.

C. Path finding Computation

Once the hierarchical subdivision is created, the path

finding computation can be done at any level of the

hierarchy. The second step consists in searching the shortest

path from the start node (S) to the goal node (G) in a specific

graph. This online search brings a performance

improvement as any graph in the hierarchy is smaller than

the one in level 0. (See Fig. 22).

The path finding computation has the following five

phases:

1) Find S and G at a certain level

The first phase of this step gets S and G in a certain level

in the hierarchy. This level is specified by the user in the

Recast Tool. The algorithm receives an initial and end

positions in the NavMesh environment. Then, S and G

nodes are obtained in the graph at level 0 by searching for

their positions. Finally, their parents are recursively

searched by passing through all the levels in between until

reach the desired level. If S and G nodes are in the same

partition, a normal A* is run between them and the path

finding is completed.

2) Connect S and G to the graph

To be able to search for paths in a graph at certain level,

Start and Goal nodes have to be part of the graph. A

temporal Start node is connected to each portal in the

partition that contains it. Then, an A* is computed between

S and the center of each portal in the partition. The path

nodes and costs are stored for each portal. Finally, a new

intraedge is added between the start node the portal inside

the current partition. This step is repeated for G in its

respective partition. (See Fig. 19).

For each search, S and G should change and the cost of

inserting and deleting them is added to the total cost of

finding a solution.

3) Search for a path between S and G at the highest level

Once the S and G are temporally linked to the graph, an

A* search is performed in the current graph. The time

execution becomes faster because the number of nodes is

significantly smaller than the graph at level 0.

4) Obtain optimal subpaths

The path planning computation gives all the partitions

which are part of the optimal solution. For each of them, the

path nodes are recursively got for each lower level until the

lowest level is reached in the hierarchy. At the end, the full

path is obtained to go from S to G at the level 0.

5) Delete temporal nodes

The nodes S, G and their intraedges are eliminated from

the current graph.

The preprocessing step is shown in the Fig. 20, where a

hierarchical subdivision has been applied on a map model. The

S and G positions are denoted in white letters. In this sample,

Fig. 17. Hierarchical Subdivision: (Simple map, numMergedNodes = 5,

levels = 5). Portals are presented with red dots. IntraEdges are painted with

yellow lines. Partitions are exposed with black, blue and red separation

lines respectively. Level 0 = 76 nodes (a), Level 1 = 12 nodes (b), Level

2 = 3 nodes (c). (Model: Simple Map (76 polygons)).

Fig. 18. Hierarchical Graphs: (City Islands, $numMergedNodes = 3, levels

= 10$). Level 0 = 5151 nodes (a), Level 1 = 1469 nodes (b), Level 2 = 316
nodes (c), Level 3 = 72 nodes (d), Level 4 = 17 nodes(e), Level 5 = 4

nodes (f). (Model: City Islands (5515 polygons)).

Fig. 19. Connect Start node to the graph: Blue circles are portals of the

orange partition. White lines are the computed intraedges. Gray polygons

are obstacles or no walkable areas.

FUENTES C: HIERARCHICAL PATH FINDING TO SPEED UP CROWD SIMULATION USING NAVIGATION MESHES

17

the shortest path is found from S to G at level 2. The online step

is shown in Fig. 21. The start and goal nodes are connected to

their respective portals and run a common A* at level 2. Finally

the sub paths are found until level 0 is reached.

The complete path from the start to the end position in the

navigation mesh is achieved in a faster way than computing a

normal path finding at the level 0.

IV. RESULTS AND DISCUSSION

The results were obtained in different models with a variety

of sizes to measure the improvement achieved with the

proposed method. The comparison is based on the speed time

for calculating path finding between the start and goal node.

Furthermore, the analysis is focused on how the time taken for

each of the steps affects the total time. Also, the impact is

explored by varying the number of merged nodes for the

different levels on the performance of path finding with the

suggested method. The performance results have been tested on

an Intel® Core™ i7 processor with NVIDIA® GeForce®

610M graphics card and 8 GB of RAM.

A. Performance Test

The performance tests are based on: the number of nodes in

each level of the hierarchy and the measure of the execution

time (milliseconds) of path queries.

1) Number of Nodes

The number of resulting nodes is compared in each level

in the hierarchy as the number of merged nodes is increased

from one level to the next one. It is expected that the higher

the level, the lower the number of nodes. As an example, the

Fig. 23 shows the results obtained for the Sirus City. The

chart shows number of nodes falls steadily over the upper

levels in the hierarchy until either one partition cannot be

divided any more or the maximum level has been reached.

The division does not only depend on the

numMergedNodes parameter but every time that a partition

is created. This partition is checked whether it has

connections (edges) with other partitions. If not, then this

new nodes are not taken into account for the next level, as

they cannot be any further merged. Thus, the consecutive

subdivisions do not have an exact segmentation depending

exclusively on with the numMergedNodes parameter.

2) Time Execution

 Firstly, the total time of performing a path finding

computation was analyzed at different levels against the

execution time of performing path planning in level 0 (i.e

without any hierarchy).

Fig. 20. Hierarchical Subdivision (From (a) to (e)). The start and goal nodes

are written in white.

Fig. 21. Path finding Computation: S and G are linked to their partitions at

level 2 (a). Sub paths are calculated until level 0 is reached. (Level 1 (b)
and Level 0 (c)). The final result of the shortest path between S and G at

level 2 (d).

Fig. 23. Level vs Number of Nodes (Sirus City).

Fig. 22. Path finding Computation: (Serpentine Islands, numMergedNodes

= 4, levels = 10) Path finding at level 0 (3908 nodes) (a). Path finding at

level 0 where each node has a different color (b). Path finding at level 3

(28 nodes) (c).

18 LATIN AMERICAN JOURNAL OF COMPUTING - LAJC, VOL II, NO. 1, MAY 2015

The sample model is a map with 2615 nodes in its initial

graph. This line chart compares the total execution time per

level in the hierarchy. Each line represents the number of

merged polys from one level to the next one. To begin, the

Fig. 24 shows the computation time over City Colony. It can

be seen clearly that the execution time dramatically falls in

the first level of the hierarchy. Afterwards, there is a slowly

improvement depending on the number of merged nodes 2,

4, and 5 at level two. The other cases have a gentle upward

trend but still lower than the computation time at level 0.

The highest value reached is 1.43ms with

numMergedNodes=14 at level two. In contrast, the fastest

time is 0.142ms (six time faster) for the case of 5 merged

nodes in level 2. (See Fig. 25).

To better understand where the bottlenecks of our

algorithm appear, the partial times are compared for

computing the entire online step for each level in the

hierarchy. The online search has been divided in five steps

in order to analyze the partial times in this process. See

algorithm 3.

3) Find S and G at certain level

 The Fig. 26 illustrates the time of getting the partitions to

which Start and Goal nodes respectively belong to a certain

level. Those partitions are obtained by recursively searching

S and G positions in the upper levels of the hierarchy until

they reach a predetermined level. Overall, the time has a

gradual rise in the entire hierarchy. This was expected as the

higher the level we want to reach, the more time is

consumed. Notice that the total time for this step is not

significant in the total time (values less than 0.005 ms).

4) Connect S and G to the graph

 The chart shows the time of connecting S and G to each

of the portals in their respective partitions. S and G are

linked by performing an A* from those nodes to each portal

in the current partition. Then, the path nodes and cost are

Fig. 25. City Colony model (a). Shortest path (numMergedNodes = 5, level

= 2) (b)

Fig. 27. Link S and G Time vs Level

Fig. 26. Get S and G Time vs Level

Fig. 24. Level vs Execution Time (City Colony).

FUENTES C: HIERARCHICAL PATH FINDING TO SPEED UP CROWD SIMULATION USING NAVIGATION MESHES

19

stored by adding an intraedge.

The figure shows an upward trend throughout the levels of

the hierarchy. It exposes a particular strong growth in the

highest levels due to the number of portals being bigger in

the upper levels. (See Fig. 27). This particular behavior is

due to the fact that we have to execute as many A* searches

as the number of portals the partition has.

5) Search for a path between S and G at the highest level

 Regarding the path finding calculation, an A*

computation is faster when the searching is done in a higher

level in the hierarchy. A regular A* is performed between

the start and goal nodes at certain level. The Fig. 28 shows

the general gradual decline for all the cases. The lower the

number of nodes, the faster the exploration is. The number

of nodes in a specific level highly depends on how many

nodes were merged in its lower level. For instance, for the

case when mergedPolys = 2 and level=10, the number of

nodes was 22. The partial time was 1.333ms. When

mergedPolys = 10 and level = 3, the number of nodes was

11 with a partial time 0.287ms.

6) Obtain optimal subpaths

 The chart 30 shows the time of getting the subpaths for

each level. The subpaths are obtained by recursively get the

stored paths in each nodes of the lower levels until we reach

the level 0. Those subpaths have the nodes which become

the optimal path at level 0.

As an overall trend, the time of getting subpaths increased

fairly slowly until the penultimate level of the hierarchy.

Then, this time gradual decline in the highest level. This is

due to there are no nodes between S and k. Also, there are

not intermediate paths between them. Fig. 29 illustrates this

scenario.

Therefore, the execution time is really low and strictly

depends on the map environment and the number of merged

nodes.

7) Delete S and G

Deleting temporal S and G nodes have an insignificant

time compare to other partial times during the online

process.

V. CONCLUSION

With the booming growth of video games, there is a great

demand on path finding algorithms. In this method, a new

hierarchical path finding framework is presented to speed up

crowd simulation for large 3D environments. The approach has

two steps: Preprocessing and online search. Preprocessing step

builds the hierarchy of levels whereas that online process deals

with the path finding search. The approach has a tree hierarchy

of graphs where the searching can be performed at any level.

The main contributions of this approach are:

 A path planning algorithm for arbitrary graph types

that could be applied in any kind of 3D world

representation.

 A recursive partition of a graph based on reducing

the connector edges.

 A hierarchy of graphs to find the fastest time

execution for path planning.

The evaluation has shown a significant improvement in path

finding time execution. The method has better results when the

path planning is performed in big world representations (5 or 6

times faster than A*). For small models, a common A* is

enough. The trade-off between the chosen level and the size of

partitions is important. Also, the approach shows better

performance in non-widespread environments.

The framework presented in this research was inspired by

HPA* approach but it also provide multi-level search and

present a new algorithm that works over any kind of

environment division.

VI. FUTURE WORK

Despite the improvements, there is still a large amount of

work that could be done to obtain either fast path finding

searches or good path quality. Some of the enhancements that

Fig. 30. Time vs Level.

Fig. 28. A* Time vs Level

Fig. 29. Obtain optimal subpaths. The map model has two nodes at level 3.

No intermediate paths are calculated.

20 LATIN AMERICAN JOURNAL OF COMPUTING - LAJC, VOL II, NO. 1, MAY 2015

could be incorporated with the current framework. For instance,

the improvement of linking Start and Goal node to the current

graph. This is an important issue to address in the future. A way

of reducing link-time would be to replace A* with a version of

Dijkstra's algorithm that does not flush the pool of visited

vertices between searches. Also, those nodes could be somehow

stored in order to reduce the time execution of connecting and

deleting.

It would also be interesting to study if some steps of the

online search could be parallelized using a GPU

implementation. For example, the process of linking S and G

could be performed in separated threads for each portal as well

as getting the subtpath for each partition. Also, this approach

could be extended to work under dynamic environments where

the replanning could be done only at certain level of the

hierarchy.

ACKNOWLEDGMENT

The research reported in this document/presentation was

based on the master thesis of the author. The research, views

and conclusions contained in this document are those of the

author and his advisor. The author would like to thank to Nuria

Pelechano Gomez for her tutoring during his studies and

research in the Polytechnic University of Catalonia.

REFERENCES

[1] Loscos, Céline and Marchal, David and Meyer, Alexandre, Intuitive

Crowd Behavior in Dense Urban Environments using Local Laws.,

Theory and Practice of Computer Graphics, 2003. Proceedings, pp. 122 -
129. Jun 2003.

[2] F. Tecchia, C. Loscos, Y. Chrysanthou, Visualizing Crowds in Real-Time,

Computer Graphics forum, pp. 753 - 765, Dec 2002.
[3] Franco Tecchia and Céline Loscos and Ruth Conroy and Yiorgos

Chrysanthou, Agent Behaviour Simulator (ABS): A Platform for Urban

Behaviour Development, In GTEC’2001, pp. 17-21, 2001.
[4] Lydia Kavraki and Petr Svestka and Jean-claude Latombe and Mark

Overmars, Probabilistic Roadmaps for Path Planning in High-
Dimensional Configuration Spaces, Robotics and Automation, vol. 12,

pp. 566 - 580, Aug 1996.

[5] Nieuwenhuisen, D.; Kamphuis, A.; Mooijekind, M.; Overmars, M.H.,
Creating Small Roadmaps for Solving Motion Planning Problems, IEEE

International Conference on Methods and Models in Automation and

Robotics, pp. 531-536, 2005.
[6] R. Geraerts and M.H. Overmars, Automatic Construction of High Quality

Roadmaps for Path Planning, Utrecht University: Information and

Computing Sciences, 2004.
[7] M. Mononen. (2015, April 8), Navigation-mesh Toolset for games,

GitHub Recast and Detour, 2014. Available:

https://github.com/memononen/recastnavigation.
[8] P. E. Hart, N. J. Nilsson, and B. Raphael., A formal basis for the heuristic

determination of minimum cost paths, IEEE Transactions on Systems,

Science, and Cybernetics, vol. 4, pp. 100 - 107, July 1968.
[9] Maxim Likhachev and Geoffrey J. Gordon and Sebastian Thrun., ARA*:

Anytime A* with Provable Bounds on Sub-Optimality, Advances in

Neural Information Processing Systems 16, 2004.
[10] Koenig, Sven and Likhachev, Maxim. D*Lite, Eighteenth National

Conference on Artificial Intelligence, pp. 476 - 483, 2002.

[11] Maxim Likhachev, David Ferguson , Geoffrey Gordon, Anthony (Tony)
Stentz, and Sebastian Thrun., Anytime Dynamic A*: An Anytime,

Replanning Algorithm, Proceedings of the International Conference on

Automated Planning and Scheduling (ICAPS), Jun 2005.
[12] Haumont, D. and Debeir, Olivier and Sillion, François X., Volumetric

Cell-and-Portal Generation, Comput. Graph. Forum, 2003.

[13] Roerdink, Jos B.T.M. and Meijster, Arnold., The Watershed Transform:
Definitions, Algorithms and Parallelization Strategies., Fundam. Inf.

Forum, vol. 22, pp. 303 - 312, Sep 2003.

[14] David P. Luebke., A Developer's Survey of Polygonal Simplification
Algorithms., IEEE Computer Graphics and Applications., vol. 21, pp. 24

- 35, May 2001.

[15] G. Karypis and Vipin Kumar., Multilevel k-way Partitioning Scheme for
Irregular Graphs., Journal of Parallel and Distributed Computing., vol.

48, pp. 96 - 129, Jan 1998.

[16] Kernighan, B.W. and Lin, S., An Efficient Heuristic Procedure for
Partitioning Graphs, The Bell Systems Technical Journal, vol. 49, 1970.

[17] Adi Botea and Martin Müller and Jonathan Schaeffer, Near optimal

hierarchical path-finding., Journal of Game Development., vol. 1, pp. 7 -
28, 2004.

[18] Joseph O'Rourke, Computational Geometry in C., 2nd ed, Computational

Intelligence and Games, 2008. CIG '08. IEEE Symposium On, pp. 258 -
265, Dec. 2008.

[19] Daniel Harabor and Adi Botea., Hierarchical path planning for multi-size

agents in heterogeneous environments, CIG, 2008.

Carlos Fuentes received the Master

degree in Computer Graphics and Virtual

Reality from Polytechnic University of

Catalonia, Barcelona in 2014. From 2013

to 2014, he was a research assistant with

the Moving Research Group in UPC. His

research interest includes crowd simulation and autonomous

behavior. He is currently working in ThoughtWorks Ecuador.

https://github.com/memononen/recastnavigation

