Compresión Digital en Imágenes Médicas
Palabras clave:
digital, compresión, imagenología, JPEG, DICOMResumen
La Imagenología desempeña un papel protagónico en el campo médico, siendo su uso ampliamente generalizado en el diagnóstico y tratamiento de numerosos trastornos de la salud.
Nuevos desarrollos en la adquisición de imágenes y en la tecnología de sensores hacen posible obtener imágenes más detalladas de varios órganos del cuerpo humano. Tal mejora es ciertamente ventajosa para la práctica médica, pero supone un encarecimiento de los recursos tecnológicos necesarios para manejar imágenes de alta resolución de manera confiable. Comúnmente, el manejo eficiente de medios digitales se apoya principalmente en la compresión digital. Desde un punto de vista técnico, las imágenes médicas podrían aprovechar las ventajas de la compresión digital. Sin embargo, peculiaridades de los datos médicos imponen restricciones a su uso. Este artículo presenta un vistazo a la compresión digital en el contexto de las imágenes médicas, y una breve discusión de los aspectos regulatorios y legales asociados a su uso.
Descargas
Referencias
R. Duszak, "Medical imaging: is the growth boom over," in "Neiman Report, Harvey L. Neiman Health Policy Institute, Reston, Virginia," 2012.
R. Zhang et al., "Diagnosis of coronavirus disease 2019 pneumonia by using chest radiography: Value of artificial intelligence," Radiology, vol. 298, no. 2, pp. E88-E97, 2021.
Y. Xie et al., "Early lung cancer diagnostic biomarker discovery by machine learning methods," Translational oncology, vol. 14, no. 1, p. 100907, 2021.
G. Abate et al., "A conformation variant of p53 combined with machine learning identifies Alzheimer disease in preclinical and prodromal stages," Journal of personalized medicine, vol. 11, no. 1, p. 14, 2021.
X. Tang et al., "Image-Based Machine Learning Algorithms for Disease Characterization in the Human Type 1 Diabetes Pancreas," The American Journal of Pathology, vol. 191, no. 3, pp. 454-462, 2021.
R. Bharti, A. Khamparia, M. Shabaz, G. Dhiman, S. Pande, and P. Singh, "Prediction of heart disease using a combination of machine learning and deep learning," Computational Intelligence and Neuroscience, vol. 2021, 2021.
E. Parra-Mora, A. Cazañas-Gordon, R. Proença, and L. A. da Silva Cruz, "Epiretinal Membrane Detection in Optical Coherence Tomography Retinal Images Using Deep Learning," IEEE Access, vol. 9, pp. 99201-99219, 2021.
A. Nait-Ali and C. Cavaro-Menard, Compression of Biomedical Images and Signals. Wiley-IEEE Press, 2008.
S. S. Parikh, D. Ruiz, H. Kalva, G. Fernández-Escribano, and V. Adzic, "High bit-depth medical image compression with hevc," IEEE journal of biomedical and health informatics, vol. 22, no. 2, pp. 552-560, 2017.
V. Sanchez, F. Auli-Llinas, R. Vanam, and J. Bartrina-Rapesta, "Rate control for lossless region of interest coding in HEVC intra-coding with applications to digital pathology images," in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015: IEEE, pp. 1250-1254.
N. M. Banu and S. Sujatha, "3D medical image compression: a review," Indian Journal of Science and technology, vol. 8, no. 12, p. 1, 2015.
H. Oh, A. Bilgin, and M. W. Marcellin, "Visually lossless encoding for JPEG2000," IEEE Transactions on Image Processing, vol. 22, no. 1, pp. 189-201, 2012.
F. Valente, L. A. B. Silva, T. M. Godinho, and C. Costa, "Anatomy of an extensible open source PACS," Journal of digital imaging, vol. 29, no. 3, pp. 284-296, 2016.
I. C. Stoica, S. Mogos, A. Draghici, and R. Cergan, "The medical and medicolegal use of the radiological image storage PACS for an orthopedic hospital," Rom J Leg Med, vol. 25, pp. 235-238, 2017.
L. Yan, "DICOM standard and Its Application in PACS system," Medical Imaging Process & Technology, vol. 1, no. 1, 2018.
A. Cazañas-Gordón and E. Parra-Mora, "The Internet of Things in Healthcare. An Overview," Latin-American Journal of Computing, vol. 7, no. 1, pp. 86-99, 2020.
National Electrical Manufacturers Association (NEMA). "PS3.5 2016b—Data Structures and Encoding." https://bit.ly/3rEs2Fj (accessed accessed on July 25th 2018, 2018).
Wikimedia Commons. "File: CT of rectus sheath hematomas.png." Online. https://bit.ly/3BeFtyO (accessed 18-oct, 2021).
Wikimedia Commons. "File:Ultrasound abdomen - liver cirrhosis - 10.jpg - Wikimedia Commons." Online. https://bit.ly/34KuZex (accessed 17-October, 2021).
W. A. Pearlman and A. Said, "Digital Signal Compression: principles and practice," Cambridge University Press, 2011, pp. 251-252.
J. Kivijärvi, T. Ojala, T. Kaukoranta, A. Kuba, L. Nyúl, and O. Nevalainen, "A comparison of lossless compression methods for medical images," Computerized Medical Imaging and Graphics, vol. 22, no. 4, pp. 323-339, 1998.
M.-M. Sung et al., "Clinical Evaluation of Compression Ratios using JPEG2000 on Computed Radiography Chest Images," Journal of Digital Imaging, vol. 15, no. 2, pp. 78-83, 2002, doi: 10.1007/s10278-002-0007-6.
DICOM Standards Committee. Working Group 4 Compression, "Supplement 61:“JPEG2000 transfer syntaxes," 2009.
J. T. Norweck et al., "ACR–AAPM–SIIM technical standard for electronic practice of medical imaging," Journal of digital imaging, vol. 26, no. 1, pp. 38-52, 2013.
The Royal College of Radiologists. "The adoption of lossy image data compression for the purpose of clinical interpretation." https://bit.ly/3Jmw1fE. (accessed 12-07-2020, 2020).
R. Loose, R. Braunschweig, E. Kotter, P. Mildenberger, R. Simmler, and M. Wucherer, "Kompression digitaler Bilddaten in der Radiologie–Ergebnisse einer Konsensuskonferenz," in RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren, 2009, vol. 181, no. 01: © Georg Thieme Verlag KG Stuttgart· New York, pp. 32-37.
The Royal Australian and New Zealand College of Radiologists. "Guideline for the Use of Image Compression in Diagnostic Imaging." https://bit.ly/34Q2bkG (accessed 12-07-2021, 2021).
M. Abràmoff and C. N. Kay, "Chapter 6 - Image Processing," in Retina, vol. 1, S. J. Ryan et al. Eds., 5th ed. London: W.B. Saunders, 2013, pp. 151-176.
D. Dennison and K. Ho, "Informatics Challenges—Lossy Compression in Medical Imaging," Journal of Digital Imaging, vol. 27, no. 3, pp. 287-291, 2014, doi: 10.1007/s10278-014-9693-0.
European Society of Radiology (ESR), "Usability of irreversible image compression in radiological imaging. A position paper by the European Society of Radiology (ESR)," Insights into Imaging, journal article vol. 2, no. 2, pp. 103-115, April 01 2011, doi: 10.1007/s13244-011-0071-x.
J. P. Fritsch and R. Brennecke, "Lossy JPEG Compression in Quantitative Angiography: the Role of X-ray Quantum Noise," Journal of Digital Imaging, vol. 24, no. 3, pp. 516-527, 2011, doi: 10.1007/s10278-010-9275-8.
A. Fidler, B. Likar, and U. Skalerič, "Lossy JPEG compression: easy to compress, hard to compare," Dentomaxillofacial Radiology, vol. 35, no. 2, pp. 67-73, 2006, doi: 10.1259/dmfr/52842661.
D. A. Koff and H. Shulman, "An overview of digital compression of medical images: can we use lossy image compression in radiology?," Canadian Association Of Radiologists Journal, vol. 57, no. 4, pp. 211-217, 2006.
F. Liu, M. Hernandez-Cabronero, V. Sanchez, M. W. Marcellin, and A. Bilgin, "The Current Role of Image Compression Standards in Medical Imaging," Information, vol. 8, no. 4, p. 131, 2017.
D. M. Chandler, N. L. Dykes, and S. S. Hemami, "Visually lossless compression of digitized radiographs based on contrast sensitivity and visual masking," in Medical Imaging 2005: Image Perception, Observer Performance, and Technology Assessment, 2005, vol. 5749: International Society for Optics and Photonics, pp. 359-373.
Y. Zhang, Z. Dong, L. Wu, S. Wang, and Z. Zhou, "Feature Extraction of Brain MRI by Stationary Wavelet Transform," in 2010 International Conference on Biomedical Engineering and Computer Science, 23-25 April 2010 2010, pp. 1-4, doi: 10.1109/ICBECS.2010.5462491.
Descargas
Publicado
Número
Sección
Licencia
Aviso de derechos de autor/a
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la Creative Commons Attribution-Non-Commercial-Share-Alike 4.0 International, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores a compartir su trabajo en línea (por ejemplo: en repositorios institucionales o páginas web personales) antes y durante el proceso de envío del manuscrito, ya que puede conducir a intercambios productivos, a una mayor y más rápida citación del trabajo publicado.
Descargo de Responsabilidad
LAJC en ningún caso será responsable de cualquier reclamo directo, indirecto, incidental, punitivo o consecuente de infracción de derechos de autor relacionado con artículos que han sido presentados para evaluación o publicados en cualquier número de esta revista. Más Información en nuestro Aviso de Descargo de Responsabilidad.