People Recognition for Loja ECU911 applying artificial vision techniques

  • Diego Cale Universidad Nacional de Loja
  • Verónica Chimbo Universidad Nacional de Loja
  • Henry Paz-Arias Escuela Politécnica Nacional
  • Jhonattan Javier Barriga-Andrade Escuela Politécnica Nacional
Keywords: OPENCV, QT CREATOR, EIGENFACES, FISHERFACES, LBPH, ICONIX, FRAME, artificial vision, people recognition

Abstract

This article presents a technological proposal based on artificial vision which aims to search people in an intelligent way by using IP video cameras. Currently, manual searching process is time and resource demanding in contrast to automated searching one, which means that it could be replaced. In order to obtain optimal results, three different techniques of artificial vision were analyzed (Eigenfaces, Fisherfaces, Local Binary Patterns Histograms). The selection process considered factors like lighting changes, image quality and changes in the angle of focus of the camera. Besides, a literature review was conducted to evaluate several points of view regarding artificial vision techniques.

DOI

Downloads

Download data is not yet available.

References

E. Aldabas-Rubira, “Introducci ́on al reconocimiento de patrones me-diante redes neuronales,”IX Jornades de Confer`encies d’EnginyeriaElectr`onica del Campus de Terrassa, Terrassa, Espa ̃na, del 9 al 16de Diciembre del 2002, 2002.

T. Ahonen, A. Hadid, and M. Pietik ̈ainen, “Face recognition with localbinary patterns,” inComputer vision-eccv 2004.Springer, 2004, pp.469–481.

N. J. Nilsson, R. M. Morales, J. T. P. M ́endez, and E. P. Aris,Inteligenciaartificial: una nueva sintesis. McGraw-Hill Boston, 2001, vol. 2.

G. Hiebert, “Openal 1.1 specification and reference,” 2005.

Y. Xu and D. Zhang, “A new solution scheme of unsupervised locality preserving projection method for the sss problem,” inStructural, Syntac-tic, and Statistical Pattern Recognition. Springer, 2008, pp. 775–781.

BioBouncer.(2016,feb)Biobouncer.[Online].Available:http://www.engadget.com/2006/02/28/biobouncer-facial-recognition-system-for-bars-clubs/

P. I. Wilson and J. Fernandez, “Facial feature detection using haarclassifiers,”Journal of Computing Sciences in Colleges, vol. 21, no. 4,pp. 127–133, 2006.

X. Lu, “Image analysis for face recognition,”personal notes, May, vol. 5,2003.

W. Clarksburg, “Fbi announces full operational capability of the nextgeneration identification system,”Criminal Justice Information ServicesDivision, 2014.

Opencv. (2015, feb) Face recognition with opencv. [Online]. Available:http://docs.opencv.org/modules/contrib/doc/facerec/facerectutorial.html

A. S. Abdallah, A. L. Abbott, and M. A. El-Nasr, “A new face detectiontechnique using 2d dct and self organizing feature map,” inProc. ofWorld Academy of Science, Engineering and Technology, vol. 21, 2007,pp. 15–19.

C. R. Giardina and E. R. Dougherty, “Morphological methods in imageand signal processing,”Engelwood Cliffs: Prentice Hall, 1988, vol. 1,1988.

M. A. Turk and A. P. Pentland, “Face recognition using eigenfaces,” inComputer Vision and Pattern Recognition, 1991. Proceedings CVPR’91.,IEEE Computer Society Conference on. IEEE, 1991, pp. 586–591.

J. Sang, Z. Lei, and S. Z. Li, “Face image quality evaluation for iso/iecstandards 19794-5 and 29794-5,” inAdvances in Biometrics. Springer,2009, pp. 229–238.

W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recog-nition: A literature survey,”ACM computing surveys (CSUR), vol. 35,no. 4, pp. 399–458, 2003.

J. KIM1, B.-S. Kim, and S. Savarese, “Comparing image classificationmethods: K-nearest-neighbor and support-vector-machines,”Ann Arbor,vol. 1001, pp. 48 109–2122, 2012.

Published
2016-05-20
How to Cite
[1]
D. Cale, V. Chimbo, H. Paz-Arias, and J. Barriga-Andrade, “People Recognition for Loja ECU911 applying artificial vision techniques”, LAJC, vol. 3, no. 1, pp. 27 - 34, May 2016.
Section
Research Articles for the Regular Issue