Functional Data Analysis Applied to Financial Risk: a Case Study in Ecuadorian Credit Unions

  • Sergio Castillo Universidad de las Fuerzas Armadas ESPE
  • Miguel Flores Universidad de las Fuerzas Armadas ESPE
  • Giovanni Herrera Universidad de las Fuerzas Armadas ESPE
Keywords: Functional Data, financial risk, supervised classification.

Abstract

There is a wide variety of statistical tools developed for making decisions in the business context. The analysis of functional data is a area of study of growing importance in the last years. In the present paper some of its applied techniques are proposed to make analysis of financial risk. Specifically, results from exploratory functional analysis, identification of atypical data and the construction of supervised classification models based on the risk classification of credit unions, subject to the control of the Superintendency of Banks of Ecuador, taking as functional variables the NPL ratio and the net profit margin in the period July 2011 to December 2012.

DOI  

Downloads

Download data is not yet available.

Author Biography

Sergio Castillo, Universidad de las Fuerzas Armadas ESPE

 

 

References

Altman, E. I. (1968). Financial ratios, discriminant analysis and theprediction of corporate bankrupt. The Journal of Finance, 589-609.

Cardot, H.; Faivre, R.; Goulard, M., and Vialard (2001). Functionalapproaches for predicting land use with the temporal evolution of coarseresolution remote sensing data. Journal of Applied Statistics, 1185-1199.

J ́on Danielsson (2002); The emperor has no clothes: Limits to riskmodelling. Journal of Banking & Finance, Vol. 26, Issue 7, 1273-1296

De Lara Haro, A. (2005). Medición y control de riesgos financieros.Editorial Limusa.

Elizondo, A., and Altman, E.I. (2003). Medición integral del riesgo de crédito. Editorial Limusa.

Febrero-Bande, M., and Oviedo de la Fuente, M. (2012). StatisticalComputing in Functional Data Analysis: The R Package fda.usc. Journalof Statistical Software.

Ferraty F, Vieu P. (2006). Nonparametric Functional Data Analysis.Springer-Verlag, New York.

García, M. L. S., and García, M. J. S. (2010). Modelos para medir el riesgo de crédito de la banca. Cuadernos de Administración, 295-319.

Hippler, W., and Hassan, K. (2015). The impact of macroeconomic and financial stress on the U.S financial sector. Journal of Financial Stability,61-80.

Lizarzaburu, E., Berggrun, L., and Quispe, J. (2012). Gestión de riesgosfinancieros. Experiencia en un banco latinoamericano. Estudios Gerenciales, 96-103.

Miño Grijalva, W. (2013). Historia del Cooperativismo en Ecuador. Quito: Editogran S.A.

R Development Core Team. R: a language and environment for statisticalcomputing. R Foundation for Statistical Computing,Vienna, Austria,(2008). http://www.R-project.org.

Ramsay, J. O., and Dalzell, C. J. (1991). Some Tools for FunctionalData Analysis. Journal of the Royal Statistical Society. Series B (Met-hodological), 539-572.

Ramsay, J. O., and Silverman, B. W. (2002). Applied Functional DataAnalysis:Methods and Case Studies. Springer-Verlag.

Ramsay, J., and Silverman, B. (2006). Functional Data Analysis.Springer-Verlag.

Ratcliffe, S. J., Leader, L., and Heller, G. Z. (2002). Functional dataanalysis with application to periodically stimulated foetal heart rate data. I: Functional regression. Statistics in Medicine, 1103-1114.

Ravi Kumar, P., and Ravi, V. (2007). Bankruptcy prediction in banksand firms via statistical and intelligent techniques A review. European Journal of Operational Research, 128.

Superintendencia de Bancos del Ecuador. (2013). Calificaci ́on de Riesgode Instituciones Financieras. Recuperado en Diciembre de 2013, de http://www.sbs.gob.ec/practg/sbsindex?vpartid=836&vptip=2

Superintendencia de Bancos del Ecuador. (2013). Boletines Financieros mensuales de las Cooperativas de ahorro y crédito del Ecuador, de http://www.superbancos.gob.ec/practg/sbsindex?vpartid=488&vptip=2&vpbuscr=41#2

Silva, W., Kimura, H., and Amorin-Sobreiro, V. (2016). An Analysis of the literarture on systemic financial risk: a survey. Journal of FinancialStability, DOI:10.1016/j.jfs.2016.12.004.

Tam, K. (1991). Neural Network Models and the Prediction of BankBankruptcy. Omega, 429-445.

Published
2017-07-12
How to Cite
[1]
S. Castillo, M. Flores, and G. Herrera, “Functional Data Analysis Applied to Financial Risk: a Case Study in Ecuadorian Credit Unions”, LAJC, vol. 4, no. 1, p. 7, Jul. 2017.
Section
Research Articles for the Regular Issue