Object Detection and Movement Patterns Using Neural Networks and Genetic Algorithms for the Identification of Armed Robbery

  • Walter Leturia-Rodriguez Universidad Privada Antenor Orrego
  • Luis Urrelo-Huiman Universidad Privada Antenor Orrego
Keywords: Machine Learning, Object Detection, Movement Pattern Detection

Abstract

In Latin America there are 42 of the 50 most violent cities in the world, in Peru in 2019 9.7% of criminal acts with firearms were carried out in urban areas and in cities with 20,000 or more inhabitants the percentage rose to 10.2%, but the complaints, due to lack of evidence, generated in cities like Lima, only 19.46% of arrests. The members of the police force have devices, vehicles and tools that allow them to carry out their functions in a safe manner, however, they do not have an effective mechanism, which allows to identify an armed robbery and to concentrate their efforts on carrying out a timely intervention. Therefore, the present research develops an algorithm based on Recurrent Neural Networks with OpenCv / YOLOv3 combined with the Genetic Algorithms technique for the detection of objects and movement patterns with 96.5% accuracy, allowing early detection of a crime perpetrated under the modality of armed robbery.

DOI

Downloads

Download data is not yet available.

References

Y. Ming y C. Camp Yeakey: “A Comparative Study of the World’s Most Dangerous Cities: Violence as the Ultimate Public Heath Challenge, Insights of Anthropology”, vol. 2, nº 1, pp. 67-85, (2018).

INEI,: Estadísticas de Seguridad Ciudadana, Noviembre 2018 – Abril 2019, p. 39, (2019).

R. Vajhala, R. Maddineni, y P. Raj Yeruva: “Weapon Detection in Surveillance Camera Images, Bleking Institute of Technology”, 2016.

M. Nakib, M. Sakibul Hasan, R. Tanvir Khan y J. Uddin: “Crime Scene Prediction by Detecting Threatening Objects Using Convolutional Neural Network”, IEEE Explore, Uk, 2018.

O. Stenroos: “Object detection from images using convolutional neural networks, Aalto University Master’s Programme in Computer, Communication and Information Sciences”, 2017.

M. Grega, A. Matiolanski, P. Guzik y M. Leszczuk: “Automated Detection of Firearms and Knives in a CCTV Image, Murali Subbarao”, 2015.

Google Cloud, Business impacts of machine learning, Google Cloud, 2017.

F. Sancho Caparrini: “Introducción al Aprendizaje Automático”, 2017/09/23. [En línea]. Available: http://www.cs.us.es/~fsancho/?e=75. [Último acceso: 2019/02/18].

R. Velasquez y G. Acuña,: “Entrenamiento de Redes Neuronales Recurrentes para Sistemas Dinámicos Tipo NARMAX Y NOE, SBIC Sociedad Brasileira de Inteligencia Computacional”, 2016.

J. Gelvez Prieto: “Redes neuronales convolucionales y redes neuronales recurrentes en la transcripcion automática, Universidad Nacional de Colombia”, 2019.

Ministerio de Justicia y Derechos Humanos, Código Penal Peruano, Lima: Ministerio de Justicia y Derechos Humanos, 2016.

Published
2021-07-01
How to Cite
[1]
W. Leturia-Rodriguez and L. Urrelo-Huiman, “Object Detection and Movement Patterns Using Neural Networks and Genetic Algorithms for the Identification of Armed Robbery”, LAJC, vol. 8, no. 2, pp. 46-57, Jul. 2021.
Section
Research Articles for the Regular Issue