Essentially non-oscillatory schemes applied to Buckley-Leverett equation with diffusive term
Abstract
The purpose of this work was to investigate the flow of two-phase fluids via the Buckley-Leverett equation, corresponding to three types of scenarios applied in oil extraction, including a diffusive term. For this, a weighted essentially non-oscillatory scheme, a Runge-Kutta method and a central finite difference were computationally implemented. In addition, a numerical study related to the precision order and stability was performed. The use of these methods made it possible to obtain numerical solutions without oscillations and without excessive numerical dissipation, sufficient to assist in the understanding of the mixing profiles of saturated water and petroleum fluids, inside pipelines filled with porous material, in addition to allowing the investigation of the impact of adding the diffusive term in the original equation.
Downloads
References
S. E. Buckley, and M. C. Leverett, “Mechanism of fluid displacement in sands,” Trans. AIME, vol. 146, pp. 187–196, 1942.
F. L. Fayers, and J. W. Sheldon, “The effect of capillary pressure and gravity on two-phase fluid flow in porous medium,” Trans. AIME, vol. 216, pp. 147-155, 1959.
W. Proskurowski, “A note on solving the Buckley-Leverett equation in the presence of gravity,” J. Comput. Phys., vol. 41, pp. 136-141, 1981.
D. A. DiCarlo, “Experimental measurements of saturation overshoot on infiltration,” Water Resour. Res., vol. 40, pp. 4215-1-4215.9, 2004.
Y. Wang, and C-Y. Kao, “Central schemes for the modified Buckley–Leverett equation,” J. Comput. Sci., vol. 4, pp. 12-23, 2013.
E. Abreu, and J. Vieira, “Computational numerical solutions of the pseudo-parabolic Buckley-Leverett equation with dynamic capillary pressure,” Math. Comput. Simulation, vol. 137, issue C, pp. 29-48, 2017.
R. O. Garcia, and G. P. Silveira, “Essentially non-oscillatory schemes applied to Buckley-Leverett equation,” in XXV ENMC - Encontro Nacional de Modelagem Computacional, XIII ECTM - Encontro de Ciência e Tecnologia de Materiais, 9º MCSul - Conferência Sul em Modelagem Computacional, and IX SEMENGO - Seminário e Workshop em Engenharia Oceânica, 2022 [Online]. Available: https://acortar.link/NsYCOb [Acessed: Feb. 2, 2023].
R. J. Leveque, Finite Volume Methods for Hyperbolic Problems. New York: Cambridge University Press, 2002.
C. J. van Duijin, L. A. Peletier, and I. S. Pop, “A new class of entropy solutions of the Buckley-Leverett equation,” , SIAM J. Math. Anal., vol. 39, no. 2, pp. 507-536, 2007.
A. Harten, and S. Osher, “Uniformly high-order accurate non-oscillatory schemes I,” SIAM J. Numer. Anal., vol. 24, pp. 279-309, 1987.
A. Harten, S. Osher, B. Engquist, and S. Chakravarthy, “Uniformly high-order accurate non-oscillatory schemes III,” J. Comput. Phys., vol. 71, pp. 231-303, 1987.
C-W. Shu, and S. Osher, “Efficient implementation of essentially non-oscillatory shock capturing schemes,” J. Comput. Phys., vol. 77, pp: 439-471, 1988.
G-S. Jiang, and C-W Shu, “Efficient Implementation of Weighted ENO Schemes,” J. Comput. Phys., vol. 126, pp: 202-228, 1996.
G. A. Gerolymos, D. Sénéchal, and I. Vallet, “Very-high-order WENO schemes,” J. Comput. Phys., vol. 228, pp. 8481-8524, 2009.
G. P. Silveira, and L. C. Barros, “Numerical methods integrated with fuzzy logic and stochastic method for solving PDEs: An application to dengue,” Fuzzy Sets Syst., vol. 225, pp. 39-57, 2013.
J. W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods. New York: Springer, 1995.
M. Motamed, C. B. Macdonald, and S. J. Ruuth, “On the linear stability of the fifth-order WENO discretization,” J. Sci. Comput., vol. 47, pp. 127-149, 2011.
Copyright (c) 2024 Latin American Journal of Computing
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This article is published by LAJC under a Creative Commons Attribution-Non-Commercial-Share-Alike 4.0 International License. This means that non-exclusive copyright is transferred to the National Polytechnic School. The Author (s) give their consent to the Editorial Committee to publish the article in the issue that best suits the interests of this Journal. Find out more in our Copyright Notice.
Disclaimer
LAJC in no event shall be liable for any direct, indirect, incidental, punitive, or consequential copyright infringement claims related to articles that have been submitted for evaluation, or published in any issue of this journal. Find out more in our Disclaimer Notice.