Segmentation of Lung Tomographic Images Using U-Net Deep Neural Networks

Keywords: U-Net, Semantic Segmentation, Deep Neural Networks, Biomedical Images

Abstract

Deep Neural Networks (DNNs) are among the best methods of Artificial Intelligence, especially in computer vision, where convolutional neural networks play an important role. There are numerous architectures of DNNs, but for image processing, U-Net offers great performance in digital processing tasks such as segmentation of organs, tumors, and cells for supporting medical diagnoses. In the present work, an assessment of U-Net models is proposed, for the segmentation of computed tomography of the lung, aiming at comparing networks with different parameters. In this study, the models scored 96% Dice Similarity Coefficient on average, corroborating the high accuracy of the U-Net for segmentation of tomographic images.

DOI

Downloads

Download data is not yet available.

References

A. Owoyemi, J. Owoyemi, A. Osiyemi, and A. Boyd, “Artificial Intelligence for Healthcare in Africa,” Front Digit. Health, vol. 2, Jul. 2020, doi: 10.3389/fdgth.2020.00006.

C. C. Onu, J. Lebensold, W. L. Hamilton, and D. Precup, “Neural Transfer Learning for Cry-Based Diagnosis of Perinatal Asphyxia,” in Interspeech 2019, Sep. 2019, pp. 3053–3057. doi: 10.21437/Interspeech.2019-2340.

V. Bellemo et al., “Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study,” Lancet Digit. Health, vol. 1, no. 1, pp. e35–e44, May 2019, doi: 10.1016/S2589-7500(19)30004-4.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.

M. A. Wani, F. A. Bhat, S. Afzal, and A. I. Khan, Advances in Deep Learning, vol. 57. Singap.: Springer Singap., 2020. doi: 10.1007/978-981-13-6794-6.

M. K. Santos, J. R. Ferreira Júnior, D. T. Wada, A. P. M. Tenório, M. H. Nogueira-Barbosa, and P. M. de A. Marques, “Artificial intelligence, machine learning, computer-aided diagnosis, and radiomics: advances in imaging towards to precision medicine,” Radiol. Bras., vol. 52, no. 6, pp. 387–396, Dec. 2019, doi: 10.1590/0100-3984.2019.0049.

N. Shusharina et al., “Cross-Modality Brain Structures Image Segmentation for the Radiotherapy Target Definition and Plan Optimization,” in Segmentation, Classification, and Registration of Multi-modality Med. Imag. Data, Cham: Springer, 2021, pp. 3–15. doi: 10.1007/978-3-030-71827-5_1.

P. Iassonov, T. Gebrenegus, and M. Tuller, “Segmentation of X-ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures,” Water Resour. Res., vol. 45, no. 9, Sep. 2009, doi: 10.1029/2009WR008087.

A. Buratti, J. Bredemann, M. Pavan, R. Schmitt, and S. Carmignato, “Applications of CT for Dimensional Metrology,” in Industrial X-Ray Computed Tomography, Cham: Springer Int. Publishing, 2018, pp. 333–369. doi: 10.1007/978-3-319-59573-3_9.

A. Alvarenga de Moura Meneses et al., “Automated segmentation of synchrotron radiation micro-computed tomography biomedical images using Graph Cuts and neural networks,” Nucl. Instrum. Methods Phys. Res. A, vol. 660, no. 1, pp. 121–129, Dec. 2011, doi: 10.1016/j.nima.2011.08.007.

A. El-Baz, X. Jiang, and J. S. Suri, Biomedical Image Segmentation: Advances and Trends. 2016.

A. A. de M. Meneses, D. B. Palheta, C. J. G. Pinheiro, and R. C. R. Barroso, “Graph cuts and neural networks for segmentation and porosity quantification in Synchrotron Radiation X-ray μCT of an igneous rock sample,” Appl. Radiat. and Isot., vol. 133, pp. 121–132, Mar. 2018, doi: 10.1016/j.apradiso.2017.12.019.

J. Yang et al., “Autosegmentation for thoracic radiation treatment planning: A grand challenge at AAPM 2017,” Med. Phys., vol. 45, no. 10, pp. 4568–4581, Oct. 2018, doi: 10.1002/mp.13141.

M. K. Santos, J. R. Ferreira Júnior, D. T. Wada, A. P. M. Tenório, M. H. Nogueira-Barbosa, and P. M. de A. Marques, “Artificial intelligence, machine learning, computer-aided diagnosis, and radiomics: advances in imaging towards to precision medicine,” Radiol. Bras., vol. 52, no. 6, pp. 387–396, Dec. 2019, doi: 10.1590/0100-3984.2019.0049.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” in Med. Image Comput. and Computer-Assisted Intervention, Cham: Springer, 2015, pp. 234–241. doi: 10.1007/978-3-319-24574-4_28.

Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation,” in Med. Image Comput. and Computer-Assisted Intervention, Cham: Springer, 2016, pp. 424–432. doi: 10.1007/978-3-319-46723-8_49.

J. C. González Sánchez, M. Magnusson, M. Sandborg, Å. Carlsson Tedgren, and A. Malusek, “Segmentation of bones in medical dual-energy computed tomography volumes using the 3D U-Net,” Physica Medica, vol. 69, pp. 241–247, Jan. 2020, doi: 10.1016/j.ejmp.2019.12.014.

X. Dong et al., “Automatic multiorgan segmentation in thorax CT images using U-net-GAN,” Med. Phys., vol. 46, no. 5, pp. 2157–2168, May 2019, doi: 10.1002/mp.13458.

P. F. Christ et al., “Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields,” in Med. Image Comput. and Computer-Assisted Intervention, Cham: Springer, 2016, pp. 415–423. doi: 10.1007/978-3-319-46723-8_48.

K. Paiva et al., “Performance evaluation of segmentation methods for assessing the lens of the frog Thoropa miliaris from synchrotron-based phase-contrast micro-CT images,” Physica Medica, vol. 94, pp. 43–52, Feb. 2022, doi: 10.1016/j.ejmp.2021.12.013.

G. Sena et al., “Synchrotron X-ray biosample imaging: opportunities and challenges,” Biophys. Rev., vol. 14, no. 3, pp. 625–633, Jun. 2022, doi: 10.1007/s12551-022-00964-4.

S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image Segmentation Using Deep Learning: A Survey,” IEEE Trans. Pattern Anal. Mach. Intell., pp. 1–1, 2021, doi: 10.1109/TPAMI.2021.3059968.

S. Ghosh, N. Das, I. Das, and U. Maulik, “Understanding Deep Learning Techniques for Image Segmentation,” ACM Comput. Surv., vol. 52, no. 4, pp. 1–35, Jul. 2020, doi: 10.1145/3329784.

C. Chen et al., “Deep Learning for Cardiac Image Segmentation: A Review,” Front Cardiovasc. Med., vol. 7, Mar. 2020, doi: 10.3389/fcvm.2020.00025.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998, doi: 10.1109/5.726791.

Francois Chollet, Deep Learning with Python, 2nd ed. 2021.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, Oct. 1986, doi: 10.1038/323533a0.

S. Wang, D. M. Yang, R. Rong, X. Zhan, and G. Xiao, “Pathology Image Analysis Using Segmentation Deep Learning Algorithms,” Am J Pathol, vol. 189, no. 9, pp. 1686–1698, Sep. 2019, doi: 10.1016/j.ajpath.2019.05.007.

A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep Learning for Computer Vision: A Brief Review,” Comput. Intell. Neurosci., vol. 2018, pp. 1–13, 2018, doi: 10.1155/2018/7068349.

N. Siddique, S. Paheding, C. P. Elkin, and V. Devabhaktuni, “U-Net and Its Variants for Medical Image Segmentation: A Review of Theory and Applications,” IEEE Access, vol. 9, pp. 82031–82057, 2021, doi: 10.1109/ACCESS.2021.3086020.

Y. Sha, D. J. Gagne II, G. West, and R. Stull, “Deep-Learning-Based Gridded Downscaling of Surface Meteorological Variables in Complex Terrain. Part I: Daily Maximum and Minimum 2-m Temperature,” J Appl. Meteorol. Climatol., vol. 59, no. 12, pp. 2057–2073, Dec. 2020, doi: 10.1175/JAMC-D-20-0057.1.

K. Clark et al., “The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository,” J Digit. Imaging, vol. 26, no. 6, pp. 1045–1057, Dec. 2013, doi: 10.1007/s10278-013-9622-7.

“Data from Lung CT Segmentation Challenge,” The Cancer Imaging Archive, May 2017.

J. Yang et al., “Autosegmentation for thoracic radiation treatment planning: A grand challenge at AAPM 2017,” Med. Phys., vol. 45, no. 10, pp. 4568–4581, Oct. 2018, doi: 10.1002/mp.13141.

N. Vinod and E. H. Geoffrey, “Rectified Linear Units Improve Restricted Boltzmann Machines,” in ICML, Jan. 2010.

T. Hastie, J. Friedman, and R. Tibshirani, The Elements of Statistical Learning. New York, NY: Springer New York, 2001. doi: 10.1007/978-0-387-21606-5.

T. J. Sorensen, A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. I kommission hos E. Munksgaard, 1948.

C. Sammut and G. I. Webb, Eds., Encyclopedia of Machine Learning. Springer Science & Business Media, 2011.

W. H. Kruskal and W. A. Wallis, “Use of Ranks in One-Criterion Variance Analysis,” J Am Stat. Assoc., vol. 47, no. 260, pp. 583–621, Dec. 1952, doi: 10.1080/01621459.1952.10483441.

O. J. Dunn, “Multiple Comparisons among Means,” J Am Stat. Assoc., vol. 56, no. 293, pp. 52–64, Mar. 1961, doi: 10.1080/01621459.1961.10482090.

B. Acun, M. Murphy, X. Wang, J. Nie, C.-J. Wu, and K. Hazelwood, “Understanding Training Efficiency of Deep Learning Recommendation Models at Scale,” in 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), Feb. 2021, pp. 802–814. doi: 10.1109/HPCA51647.2021.00072.

N. Kumari and B. S. Saini, “Fully Automatic Wheat Disease Detection System by Using Different CNN Models,” in Sentiment Anal. and Deep Learn. Advances in Intell. Syst. and Comput., Singap.: Springer Singap., 2023, pp. 351–365. doi: 10.1007/978-981-19-5443-6_26.

S. R. Nayak, D. R. Nayak, U. Sinha, V. Arora, and R. B. Pachori, “An Efficient Deep Learning Method for Detection of COVID-19 Infection Using Chest X-ray Images,” Diagnostics, vol. 13, no. 1, p. 131, Dec. 2022, doi: 10.3390/diagnostics13010131.

I. Kandel and M. Castelli, “The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset,” ICT Express, vol. 6, no. 4, pp. 312–315, Dec. 2020, doi: 10.1016/j.icte.2020.04.010.

Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++: A Nested U-Net Architecture for Medical Image Segmentation,” in Deep Learn. in Med. Image Anal. and Multimodal Learn. for Clin. Decis. Support, Cham: Springer, 2018, pp. 3–11. doi: 10.1007/978-3-030-00889-5_1.

H. Huang et al., "UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation," in ICASSP 2020 - 2020 IEEE Int. Conf. on Acoustics, Speech and Signal Process. (ICASSP), Barcelona, Spain, 2020, pp. 1055-1059, doi: 10.1109/ICASSP40776.2020.9053405.

Y. Deng, Y. Hou, J. Yan, and D. Zeng, “ELU-Net: An Efficient and Lightweight U-Net for Medical Image Segmentation,” IEEE Access, vol. 10, pp. 35932–35941, 2022, doi: 10.1109/ACCESS.2022.3163711.

Published
2023-07-07
How to Cite
[1]
E. Stefanato, V. de Oliveira, C. Pinheiro, R. Barroso, and A. Meneses, “Segmentation of Lung Tomographic Images Using U-Net Deep Neural Networks”, LAJC, vol. 10, no. 2, pp. 106-119, Jul. 2023.
Section
Research Articles for the Regular Issue