Alzheimer's diagnosis system based on magnetic resonance imaging using the VGG16 algorithm
Abstract
Early diagnosis of Alzheimer's disease is essential to provide timely treatment to patients. In this regard, a system for diagnosing Alzheimer's disease based on magnetic resonance imaging and utilizing a convolutional neural network algorithm called VGG16, has been developed. Magnetic resonance images of patients with and without Alzheimer's disease were collected and processed. These images were used to train the algorithm, which learned to identify and associate patterns with the disease. Subsequently, tests were performed with a set of unseen images to evaluate the diagnostic ability of the system. Through the analysis of magnetic resonance images, the VGG16 algorithm has shown a capacity of over 82% to correctly recognize these signs. These results validate the effectiveness of the artificial intelligence-based approach for diagnosing Alzheimer's disease.
Downloads
References
S. O. Danso, Z. Zeng, G. Muniz-Terrera, and C. W. Ritchie, “Developing an Explainable Machine Learning-Based Personalised Dementia Risk Prediction Model: A Transfer Learning Approach With Ensemble Learning Algorithms,” Front. Big Data, vol. 4, no. May, pp. 1–14, 2021, doi: 10.3389/fdata.2021.613047.
G. Mukhtar and S. Farhan, “Convolutional neural network based prediction of conversion from mild cognitive impairment to alzheimer’s disease: A technique using hippocampus extracted from MRI,” Adv. Electr. Comput. Eng., vol. 20, no. 2, pp. 113–122, 2020, doi: 10.4316/AECE.2020.02013.
A. Gopalsamy, B. Radha, and K. Haridas, “Prediction of neurodegenerative disease using brain image analysis with multilinear principal component analysis and quadratic discriminant analysis,” Int. J. Adv. Technol. Eng. Explor., vol. 9, no. 90, pp. 604–622, 2022, doi: 10.19101/IJATEE.2021.875325.
M. Odusami, R. Maskeliūnas, R. Damaševičius, and S. Misra, “Explainable Deep-Learning-Based Diagnosis of Alzheimer’s Disease Using Multimodal Input Fusion of PET and MRI Images,” J. Med. Biol. Eng., vol. 43, no. 3, pp. 291–302, 2023, doi: 10.1007/s40846-023-00801-3.
T. O. Frizzell et al., “Artificial intelligence in brain MRI analysis of Alzheimer’s disease over the past 12 years: A systematic review,” Ageing Res. Rev., vol. 77, no. March 2021, p. 101614, 2022, doi: 10.1016/j.arr.2022.101614.
C. Kavitha, V. Mani, S. R. Srividhya, O. I. Khalaf, and C. A. Tavera Romero, “Early-Stage Alzheimer’s Disease Prediction Using Machine Learning Models,” Front. Public Heal., vol. 10, no. March, pp. 1–13, 2022, doi: 10.3389/fpubh.2022.853294.
M. EL-Geneedy, H. E. D. Moustafa, F. Khalifa, H. Khater, and E. AbdElhalim, “An MRI-based deep learning approach for accurate detection of Alzheimer’s disease,” Alexandria Eng. J., vol. 63, pp. 211–221, 2023, doi: 10.1016/j.aej.2022.07.062.
D. Agarwal, M. A. Berbis, T. Martín-Noguerol, A. Luna, S. C. P. Garcia, and I. de la Torre-Díez, “End-to-End Deep Learning Architectures Using 3D Neuroimaging Biomarkers for Early Alzheimer’s Diagnosis,” Mathematics, vol. 10, no. 15, pp. 1–28, 2022, doi: 10.3390/math10152575.
M. Ansart et al., “Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review,” Med. Image Anal., vol. 67, p. 101848, 2021, doi: 10.1016/j.media.2020.101848.
X. Song et al., “Graph convolution network with similarity awareness and adaptive calibration for disease-induced deterioration prediction,” Med. Image Anal., vol. 69, p. 101947, 2021, doi: 10.1016/j.media.2020.101947.
R. Jain, N. Jain, A. Aggarwal, and D. J. Hemanth, “Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images,” Cogn. Syst. Res., vol. 57, pp. 147–159, 2019, doi: 10.1016/j.cogsys.2018.12.015.
M. Sudharsan and G. Thailambal, “Alzheimer’s disease prediction using machine learning techniques and principal component analysis (PCA),” Mater. Today Proc., no. xxxx, 2021, doi: 10.1016/j.matpr.2021.03.061.
T. Zhou, K. H. Thung, M. Liu, F. Shi, C. Zhang, and D. Shen, “Multi-modal latent space inducing ensemble SVM classifier for early dementia diagnosis with neuroimaging data,” Med. Image Anal., vol. 60, 2020, doi: 10.1016/j.media.2019.101630.
Z. Pei et al., “Alzheimer’s disease diagnosis based on long-range dependency mechanism using convolutional neural network,” Multimed. Tools Appl., vol. 81, no. 25, pp. 36053–36068, 2022, doi: 10.1007/s11042-021-11279-z.
M. Subramoniam, T. R. Aparna, P. R. Anurenjan, and K. G. Sreeni, “Deep Learning-Based Prediction of Alzheimer’s Disease from Magnetic Resonance Images,” pp. 145–151, 2022, doi: 10.1007/978-981-16-7771-7_12.
N. Mahendran and D. R. V. P M, “A deep learning framework with an embedded-based feature selection approach for the early detection of the Alzheimer’s disease,” Comput. Biol. Med., vol. 141, no. September 2021, p. 105056, 2022, doi: 10.1016/j.compbiomed.2021.105056.
G. Castellazzi et al., “A Machine Learning Approach for the Differential Diagnosis of Alzheimer and Vascular Dementia Fed by MRI Selected Features,” Front. Neuroinform., vol. 14, no. June, pp. 1–13, 2020, doi: 10.3389/fninf.2020.00025.
S. B. Çelebi and B. G. Emiroğlu, “A Novel Deep Dense Block-Based Model for Detecting Alzheimer’s Disease,” Appl. Sci., vol. 13, no. 15, 2023, doi: 10.3390/app13158686.
C. Y. Cheung et al., “A deep learning model for detection of Alzheimer’s disease based on retinal photographs: a retrospective, multicentre case-control study,” Lancet Digit. Heal., vol. 4, no. 11, pp. e806–e815, 2022, doi: 10.1016/S2589-7500(22)00169-8.
E. Lella, A. Pazienza, D. Lofù, R. Anglani, and F. Vitulano, “An ensemble learning approach based on diffusion tensor imaging measures for Alzheimer’s disease classification,” Electron., vol. 10, no. 3, pp. 1–16, 2021, doi: 10.3390/electronics10030249.
A. El-Gawady, M. A. Makhlouf, B. S. Tawfik, and H. Nassar, “Machine Learning Framework for the Prediction of Alzheimer’s Disease Using Gene Expression Data Based on Efficient Gene Selection,” Symmetry (Basel)., vol. 14, no. 3, 2022, doi: 10.3390/sym14030491.
J. Zhang et al., “Predicting future cognitive decline with hyperbolic stochastic coding,” Med. Image Anal., vol. 70, p. 102009, 2021, doi: 10.1016/j.media.2021.102009.
F. Al-khuzaie, “PREDICTION OF ALZHEIMER ’ S DISEASE FROM 2-D ANATOMICAL MAGNETIC Institute of Graduate Studies Electrical and Computer Engineering PREDICTION OF ALZHEIMER ’ S DISEASE FROM 2-D ANATOMICAL MAGNETIC RESONANCE IMAGES USING DEEP LEARNING Fanar Emad Khazaal AL-,” no. November, 2022, doi: 10.13140/RG.2.2.13245.95205.
A. Alsaedi, “On Prediction of Early Signs of Alzheimer’s—A Machine Learning Framework,” ProQuest Diss. Theses, p. 101, 2021, [Online]. Available: https://acortar.link/AGc12W
H. Li, M. Habes, D. A. Wolk, and Y. Fan, “A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal magnetic resonance imaging data,” Alzheimer’s Dement., vol. 15, no. 8, pp. 1059–1070, 2019, doi: 10.1016/j.jalz.2019.02.007.
C. Navarro, “Revisión de metodologías ágiles para el desarrollo de software.,” Prospectiva, vol. 11, no. 2, pp. 30–39, 2013, [Online]. Available: https://acortar.link/8YBwnn
G. Rojas C., D. L. de Guevara, R. Jaimovich F., E. Brunetti, E. Faure L., and M. Gálvez M., “NEUROIMÁGENES EN DEMENCIAS,” Rev. Médica Clínica Las Condes, vol. 27, no. 3, pp. 338–356, 2016, doi: 10.1016/j.rmclc.2016.06.008.
C. Wang et al., “A high-generalizability machine learning framework for predicting the progression of Alzheimer’s disease using limited data,” npj Digit. Med., vol. 5, no. 1, pp. 1–10, 2022, doi: 10.1038/s41746-022-00577-x.
S. Wu et al., “Application of artificial intelligence in clinical diagnosis and treatment: an overview of systematic reviews,” Intell. Med., vol. 2, no. 2, pp. 88–96, 2022, doi: 10.1016/j.imed.2021.12.001.
T. Habuza, N. Zaki, E. A. Mohamed, and Y. Statsenko, “Deviation from Model of Normal Aging in Alzheimer’s Disease: Application of Deep Learning to Structural MRI Data and Cognitive Tests,” IEEE Access, vol. 10, pp. 53234–53249, 2022, doi: 10.1109/ACCESS.2022.3174601.
M. Liu, “Joint Classification and Regression via Deep Multi-Task Multi- Channel Learning for Alzheimer’s Disease Diagnosis,” Physiol. Behav., vol. 176, no. 1, pp. 139–148, 2019, doi: 10.1109/TBME.2018.2869989.Joint.
J. E. Arco, J. Ramírez, J. M. Górriz, and M. Ruz, “Data fusion based on Searchlight analysis for the prediction of Alzheimer’s disease,” Expert Syst. Appl., vol. 185, 2021, doi: 10.1016/j.eswa.2021.115549.
S. Basheer, S. Bhatia, and S. B. Sakri, “Computational Modeling of Dementia Prediction Using Deep Neural Network: Analysis on OASIS Dataset,” IEEE Access, vol. 9, pp. 42449–42462, 2021, doi: 10.1109/ACCESS.2021.3066213.
A. V. Lebedev et al., “Random Forest ensembles for detection and prediction of Alzheimer’s disease with a good between-cohort robustness,” NeuroImage Clin., vol. 6, pp. 115–125, 2014, doi: 10.1016/j.nicl.2014.08.023.
C. V. Angkoso, H. P. A. Tjahyaningtijas, Y. Adrianto, A. D. Sensusiati, I. K. E. Purnama, and M. H. Purnomo, “Multi-Features Fusion in Multi-plane MRI Images for Alzheimer’s Disease Classification,” Int. J. Intell. Eng. Syst., vol. 15, no. 4, pp. 182–197, 2022, doi: 10.22266/ijies2022.0831.17.
S. Toshkhujaev et al., “Classification of Alzheimer’s Disease and Mild Cognitive Impairment Based on Cortical and Subcortical Features from MRI T1 Brain Images Utilizing Four Different Types of Datasets,” J. Healthc. Eng., vol. 2020, no. Mci, 2020, doi: 10.1155/2020/3743171.
K. Shirbandi et al., “Accuracy of deep learning model-assisted amyloid positron emission tomography scan in predicting Alzheimer’s disease: A Systematic Review and meta-analysis,” Informatics Med. Unlocked, vol. 25, no. July, p. 100710, 2021, doi: 10.1016/j.imu.2021.100710.
K. M. Poloni, I. A. Duarte de Oliveira, R. Tam, and R. J. Ferrari, “Brain MR image classification for Alzheimer’s disease diagnosis using structural hippocampal asymmetrical attributes from directional 3-D log-Gabor filter responses,” Neurocomputing, vol. 419, pp. 126–135, 2021, doi: 10.1016/j.neucom.2020.07.102.
M. K. Keles and U. Kilic, “Classification of Brain Volumetric Data to Determine Alzheimer’s Disease Using Artificial Bee Colony Algorithm as Feature Selector,” IEEE Access, vol. 10, no. July, pp. 82989–83001, 2022, doi: 10.1109/ACCESS.2022.3196649.
Instituto Nacional de Ciencias Neurológicas Perú, “Instituto Nacional de Ciencias Neurológicas Perú.” https://www.incn.gob.pe/ (accessed Oct. 29, 2023).
D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C. Morris, and R. L. Buckner, “Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults,” J. Cogn. Neurosci., vol. 19, no. 9, pp. 1498–1507, Sep. 2007, doi: 10.1162/jocn.2007.19.9.1498.
P. Carcagnì, M. Leo, M. Del Coco, C. Distante, and A. De Salve, “Convolution Neural Networks and Self-Attention Learners for Alzheimer Dementia Diagnosis from Brain MRI,” Sensors, vol. 23, no. 3, 2023, doi: 10.3390/s23031694.
S. Liu et al., “Generalizable deep learning model for early Alzheimer’s disease detection from structural MRIs,” Sci. Rep., vol. 12, no. 1, pp. 1–12, 2022, doi: 10.1038/s41598-022-20674-x.
S. Lahmiri, “Integrating convolutional neural networks, kNN, and Bayesian optimization for efficient diagnosis of Alzheimer’s disease in magnetic resonance images,” Biomed. Signal Process. Control, vol. 80, p. 104375, Feb. 2023, doi: 10.1016/J.BSPC.2022.104375.
X. Zheng, J. Cawood, C. Hayre, and S. Wang, “Computer assisted diagnosis of Alzheimer’s disease using statistical likelihood-ratio test,” PLoS One, vol. 18, no. 2 February, pp. 1–11, 2023, doi: 10.1371/journal.pone.0279574.
E. Villatoro-Tello, S. P. Dubagunta, J. Fritsch, G. Raḿirez-De-La-Rosa, P. Motlicek, and M. Magimai.-Doss, “Late fusion of the available lexicon and raw waveform-based acoustic modeling for depression and dementia recognition,” Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH, vol. 1, pp. 161–165, 2021, doi: 10.21437/Interspeech.2021-1288.
S. D. Mishra and M. Dutta, “Modality feature fusion based Alzheimer’s disease prognosis,” Optik (Stuttg)., vol. 272, p. 170347, 2023, doi: 10.1016/j.ijleo.2022.170347.
C. L. Saratxaga et al., “Mri deep learning-based solution for alzheimer’s disease prediction,” J. Pers. Med., vol. 11, no. 9, 2021, doi: 10.3390/jpm11090902.
W. H. L. Pinaya et al., “Using normative modelling to detect disease progression in mild cognitive impairment and Alzheimer’s disease in a cross-sectional multi-cohort study,” Sci. Rep., vol. 11, no. 1, pp. 1–13, 2021, doi: 10.1038/s41598-021-95098-0.
S. Gupta, V. Saravanan, A. Choudhury, A. Alqahtani, M. R. Abonazel, and K. S. Babu, “Supervised Computer-Aided Diagnosis (CAD) Methods for Classifying Alzheimer’s Disease-Based Neurodegenerative Disorders,” Comput. Math. Methods Med., vol. 2022, 2022, doi: 10.1155/2022/9092289.
This article is published by LAJC under a Creative Commons Attribution-Non-Commercial-Share-Alike 4.0 International License. This means that non-exclusive copyright is transferred to the National Polytechnic School. The Author (s) give their consent to the Editorial Committee to publish the article in the issue that best suits the interests of this Journal. Find out more in our Copyright Notice.
Disclaimer
LAJC in no event shall be liable for any direct, indirect, incidental, punitive, or consequential copyright infringement claims related to articles that have been submitted for evaluation, or published in any issue of this journal. Find out more in our Disclaimer Notice.