3D Sound applied to the design of Assisted Navigation Devices for the Visually Impaired

  • José Lucio National Polytechnic School
  • Roberto Tenenbaum Universidade del Estado del Rio de Janeiro
  • Henry Paz National Polytechnic School
  • Luis Morales National Polytechnic School
  • Carlos Iñiguez National Polytechnic School
Keywords: Acoustical Virtual Reality, Auralization, Artificial Neural Networks, HRIR Interpolation, ETA devices

Abstract

This work presents an approach to generate 3D sound by using a set of artificial neural networks (ANNs). The proposed method is capable to reconstruct the Head Related Impulse Responses (HRIRs) by means of spatial interpolation. In order to cover the whole reception auditory space, without increasing the network complexity, a structure of multiple networks (set), each one modeling a specific area was adopted. The three main factors that influence the model accuracy --- the network's architecture, the reception area's aperture angles and the HRIR's time shifts --- are investigated and an optimal setup is presented. The computational effort to process the ANN is shown to be slightly smaller than traditional interpolation methods and all error calculation reached very low levels, validating the method to be used in the design of a 3D sound emitter capable of provide navigation aid for the visually impaired. Two approaches are presented in order to detect obstacles, one which makes use of computational vision techniques and other with laser proximity sensors. 

DOI

Downloads

Download data is not yet available.

References

M. Vorländer, 2008. Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality. Springer, Berlin, pp. 86–87

J. Blauert, 1997. Spatial Hearing. The MIT Press, Cambridge, pp. 372–392.

G. Wersnyi, 2009. Effect of emulated head-tracking for reducing localization errors in virtual audio simulation. IEEE Transactions On Audio, Speech, And Language Processing, vol. 17, n. 2, pp. 247–252.

T. Ajdler, C. Faller , L. Sbaiz and M. Vetterli, 2005. Sound Field Analysis along a Circle and Its Applications to HRTF Interpolation. The Journal of the Audio Engineering Society, vol. 56, n. 3, pp. 156–175.

H. Hacihabiboglu, B. Gunel and A. M. Kondoz, 2005. Head-related transfer functionfilter interpolation by root displacement. In Proc. IEEEWorkshop on Applications of Signal Processing to Audio and Acoustics (WASPAA-05), New Paltz, NY, USA, pp. 134–137.

T. Nishino, N. Inoue, K. Takeda and F. Itakura, 2007. Estimation of HRTFs on the horizontal plane using physical features. Applied Acoustics, vol. 68, pp. 897–908.

N. H. Adams and G. H. Wakefield, 2008. State-space synthesis of virtual auditory space. IEEE Transactions On Audio, Speech, And Language Processing, vol. 16, n. 5, pp. 881–890.

G. Enzner, 2009. 3D-continuous-azimuth acquisition of head-related impulse responses using multi-channel adaptive filtering. In Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA-2009), New Paltz, NY, USA, pp. 325–328.

M. Pollow and M. Vorl ̈ander, 2011. Deriving continuous HRTFs from discrete data points. Fortschritte der Akustik: DAGA 2011; 37. Jahrestagung f ̈ur Akustik; 21. Dsseldorf / DEGA.Wiss. Ed. J. Becker-Schweitzer. pp. 641–642.

J. Ahrens, M. R. P. Thomas and I. Tashev, 2012. HRTF magnitude modeling using a non-regularized least-squares fit of spherical harmonics coefficients on incomplete data. In Proc. Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC), Asia-Pacific, Dec. 2012, pp. 1–5.

J. F. Lucio Naranjo, R. A. Tenenbaum and J. C. B. Torres, 2010. Using Artificial Neural Networks to generate virtual acoustic reality applied on escape training in blind conditions. International Review of Chemical Engineering (I.RE.CH.E.), Vol. 2, No. 6, pp. 754–759.

Y. Liu and B. Xie, 2012. Analysis on the stability of spatial interpolation schemes for head-related transfer function. The Journal of the Acoustical Society of America, vol. 131, n. 4, pp. 3305–3305.

J. Tebelskis, 1995. Speech Recognition using Neural Networks. Ph.D. Thesis -Carnegie Mellon University, Pittsburgh, pp. 4–7.

D. Rumelhart, J. McClelland and the PDP Research Group, 1986. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, pp. 328–330.

S. Haykin, 2009. Neural Networks and Learning Machines. Prentice Hall, New Jersey, pp. 21–24.

B. Gardner, K. Martin, 1995. HRTF Measurements of a KEMAR Dummy-Head Microphone. The Journal of the Acoustical Society of America, vol. 97, n. 6, pp. 3907–3908.

J. C. B. Torres, M. R. Petraglia and R. A. Tenenbaum, 2004. An Efficient wavelet-based HRTF for auralization. Acta Acustica united with Acustica, vol. 90, n. 1, pp. 108–120.

Z. Haraszy, D. Ianchis and V. Tiponut, 2009Generation of the Head Related Transfer Functions Using Artificial Neural Networks. 13th WSEAS International Conference on Circuits, ISBN: 978-960-474-096-3, ISSN: 1790-5117, pp. 114–118.

E. A. Macpherson and J. C. Middlebrooks, 2002 Listener weighting ofcues for lateral angle: The duplex theory of sound localization revisited. The Journal of the Acoustical Society of America, vol. 111, n. 5, pp. 2219–2236.

H. Fletcher and W. A. Munson, 1933. Loudness, its definition, measurement and calculation. The Journal of the Acoustical Society of America, vol. 5, pp. 82–108.

ISO226, 2003. Acoustics –Normal equal-loudness-level contours.

D.Marrand T.Poggio, 1979. A computational theory of human stereo vision. Proceedings of the Royal Society of London B: Biological Sciences, 204(1156), 301-328.

J. Corso, 2012. Escáner de Tiempo de vuelo y de triangulación. [Online]. Available: http://www.surveyterra.com/2012/06/escaner-de-tiempo-de-vuelo-y-de.html.

L. Ilbay. “Reconstrucción activa de objetos 3d mediante escaneo láser y generación de la vista por medio del software MatLab”. Engineering Monography. Dept. Control andAutomatization. Eng., National Polytechnic School, Quito, 2014.

Published
2015-11-30
How to Cite
[1]
J. Lucio, R. Tenenbaum, H. Paz, L. Morales, and C. Iñiguez, “3D Sound applied to the design of Assisted Navigation Devices for the Visually Impaired”, LAJC, vol. 2, no. 2, Nov. 2015.
Section
Research Articles for the Regular Issue