Telemedicine System for Monitoring Heart Rate Using Independent Component Analysis in Videos

  • Karla Portilla Escuela Politécnica Nacional
  • Víctor Santos Escuela Politécnica Nacional
  • María Trujillo Escuela Politécnica Nacional
  • Andrés Rosales Escuela Politécnica Nacional
Keywords: independent component analysis, heart rate, contactless, face tracking, blind source separation, telemedicine


Heart is the organ responsible for providing blood, oxygen and nutrients through the human body, their initial monitoring was reflected in heart rate value, this measurement is a possible irregularity within the organism. Control of this vital sign in most cases involves help of medical staff or using sensors that need to maintain contact with the skin, these common monitoring methods generate discomfort and nonconformity in newborns, senior adults or patients suffering from skin sensitivity. According these disadvantages, project offers a non-invasive and non-contact system based on telemedicine principles, which provides a quick, reliable and economical remote heart rate monitor. Results are compared with a pulse oximeter with a resolution of 1 bpm and accuracy of ±2%, obtaining low and acceptable errors.



Download data is not yet available.

Author Biography

Karla Portilla, Escuela Politécnica Nacional




B. Herreros, F. Bandrés, “Prevención primaria de la arteriosclerosis en la hipertensión arterial., ”en Prevención primaria de la arteriosclerosis,1ra ed., Madrid , España, ADEMAS, 2009, pp. 123-125.

J. Daza, “Evaluación clínico-funcional del sistema cardiovascular,” en Evaluación clínico-funcional del movimiento corporal humano, 1ra ed., Bogotá, Colombia, Panamericana, 2007, pp. 48-69.

A. Aguayo, A. Lagos. (2012, Junio).Guía clínica de control de signos vitales, [En Linea]. Disponible en:

H. Jinich, A. Lifshitz, J. García, M. Ramiro, “Signos Vitales,” en Síntomas y signos cardinales de las enfermedades, 6ta ed., México D.F., México, El Manual Moderno,2013, pp. 339-360.

R. Janssen et al., "Video-based respiration monitoring with automatic region of interest detection", Physiological measurement, vol. 37,no. 1, pp. 100-114, 2015.

X. García et al., “Estimating cardiac output. Utility in the clinical practice. Available invasive and non-invasive monitoring”, Medicina Intensiva, vol. 35, no. 9, pp. 552-561, 2011.

C. Bustamante, W. Jara, M. Yapur, “Diseño y construcción de un contador de ritmo cardiaco, basado en un principio óptico”, Revista Tecnológica ESPOL, vol. 15, no. 1, pp. 72-78, 2002.

W. Abaya, J. Basa, M. Sy, A. Abada y E. Dadios, “Low cost smart security camera with night vision capability using Raspberry Pi and OpenCV”, Humanoid, Nanotechnology, Information Technology Communication and Control, Enviroment and Management (HNICEM),2014 Conferencia Internacional en, Palawan, 2014, pp. 1-4.

A. Kaehler, G. Bradski, “Image Processing,” en Learning OpenCV 3, 1ra ed., Boston, O’Reilly, 2016, pp. 109-129.

A. Pajankar, “Working with Images, Webcams and GUI, ”en Raspberry Pi computer vision programming, 1ra ed., Birmingham, Reino Unido, Packt Publishing, 2015, pp. 30-36.

X. Qu, J. Xu Yu y R. Brent, “A mobile TCP socket”, Australian National University, Tech Rep. TR-CS-97-08, Abr. 1997.

P. Viola y M. Jones, “Rapid object detection using a boosted cascade of simple features”, Proc. IEEE Computer Vision and Pattern Recognition, 2001.

E. Parra, “Aceleración del algoritmo de Viola-Jones mediante rejillas de procesamiento masivamente paralelo en el plano focal”, Tesis Ingeniería, Dep. de Electrónica y Electromagnetismo, Univ. Sevilla, Sevilla, 2015.

Mathworks. (2017, Septiembre). Detect corners using minimum eigen value algorithm and return corner Points object, [En Línea]. Disponible en:

G. Mur, “Inferencia de la respuesta afectiva de los espectadores de un vídeo”, Tesis Ingeniería, Dept. Sistemas Audiovisuales, Univ. Carlos III de Madrid, Madrid, 2015.

F. Bourel, C. Chibelushi y A. Low, “Robust facial feature tracking”, Proc. 11th British Machine Vision Conf., vol. 1, pp. 232-241, 2000.

Mathworks.(2017, Agosto). Track points in video using Kanade-Lucas-Tomasi (KLT) algorithm, [En Línea]. Disponible en:

W. Verkruysse, L. Svaasand yJ. Nelson, "Remote plethysmographic imaging using ambient light",Opt.Express, vol. 16, pp. 21434-21445, 2008.

H. Rahman, M. Ahmed y S. Begum, “Non-contact heart rate monitoring using Lab Color Space", Proc. 13th International Conference on Wearable, Micro & Nano Technologies for Personalized Health (pHealth2016), pp. 43-56, 2016.

J. Chávez, “,” en Tratamiento digital de imágenes multiespectrales, 2da ed., México D.F., México, UNAM, México, 2010, pp. 273-326.

B. Aldalur y M. Santamaría, “Realce de imágenes: filtrado espacial”, Revista de teledetección, vol. 17, pp. 31-42, 2002.

J. Cardoso, “Blind signal separation: statistical principles”, Proc. IEEE, vol. 9, no. 10, pp. 2009–2025, 1998.

J. Cardoso yA. Soloumiac, “Blind beamforming for non-Gaussian signals”, IEEE Proceedings, pt. F, vol. 140, pp. 362-370, 1993.

J. Miettinen, K. Nordhausen y S. Taskinen, “Blind source separation based on joint diagonalization in R: the packages JADE and BSSasymp”, Journal of Statistical Software, vol 76, 2017, [En Línea]. Disponible en:

A. Ziehe, “Blind source separation based on joint diagonalization of matrices with applications in biomedical signal processing”, Disertación Ph.D., Dept. Mat., Postdam Univ., Berlín, 2005.

L. De la Fraga. (2001, Mayo). La transformada discreta de Fourier y la transformada rápida de Fourier, [En Linea]. Disponible en:

Equipamiento Médico Integral Peru. (2017, Septiembre). Manual Oxímetro MD300C21C,[En Linea]. Disponible en:

Mathworks. (2017). Fast Fourier transform, [En Línea]. Disponible en:

How to Cite
K. Portilla, V. Santos, M. Trujillo, and A. Rosales, “Telemedicine System for Monitoring Heart Rate Using Independent Component Analysis in Videos”, LAJC, vol. 4, no. 3, pp. 11-16, Nov. 2017.
Research Articles for the Regular Issue

Most read articles by the same author(s)