Un enfoque Multi-Objetivo a la optimización del Alineamiento Múltiple de Secuencias (MSA)
Palabras clave:
Multiple Sequence Alignment, MultiObjective Optimization Metaheuristics, optimization, BioInformaticsResumen
Multiple Sequence Alignment (MSA) is one of the main topics in the bioinformatics domain, consists in finding an optimal alignment for three or more biological sequences with the number maximum of conserved zones or totally aligned columns. Different scores to assess the quality of the alignments have been proposed, so the problem can be formulated and resolved as a Multi-Objective Optimization Problem (MOP). For this reason we have carried out a perfomanced study resolving the MSA problem under a multi-objective approach, considering two popular metrics as objectives to be optimized: The weighted Sum-Of-Pairs with affine gap penalties (wSOP) and the Totally Aligned Columns (TC), with three algorithms from the state-of- the-art of Multi-Objective Optimization: NSGAII, SPEA2 and MOCell. Our experiments reveals that the classic metaheuristic NSGA-II provides the best overall performance resolving some problems provided by the benchmark BAliBASE (v3.0), under a multi-objective and biological approach.
Descargas
Referencias
J. Pei, “Multiple protein sequence alignment, ”Current Opinion in Structural Biology, vol. 18, no. 3, pp. 382 – 386, 2008,nucleic acids / Sequences and topology. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0959440X08000407
S. Needleman and C. Wunsch, “A general method applicable to the search for similarities in the aminoacid sequence of two proteins, ”Journal of Molecular Biology, vol.48, no.3, pp.443–453, 1970. [Online]. Available: http://www.sciencedirect.com/science/article/pii/0022283670900574
I. Elias, “Settling the intractability of multiple alignment,”Journal of Computational Biology, vol. 13, no. 7, pp. 1323 – 1339, 2016.
C. Kemena, J. Taly, J. Kleinjung, and C. Notredame, “Strike: evaluation of protein msas using a single 3d structure,”Bioinformatics, vol. 27,no. 24, pp. 3385–3391, 2011.
W. Soto and D. Becerra, “A multi-objective evolutionary algorithm for improving multiple sequence alignments,” in Advances in Bioinformatics and Computational Biology, ser. Lecture Notes in Computer Science,S. Campos, Ed. Springer International Publishing, 2014, vol. 8826, pp.73–82.
B. Blackburneand S. Whelan, “Measuring the distance between multiple sequence alignments, ”Bioinformatics,vol.28, no.4, pp.495–502,2012.[Online]. Available: http://bioinformatics.oxfordjournals.org/content/28/4/495.abstract
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,”IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.
E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strengthpareto evolutionary algorithm,” inEUROGEN 2001. Evolutionary Met-hods for Design, Optimization and Control with Applications to Indus-trial Problems, K. Giannakoglou, D. Tsahalis, J. Periaux, P. Papailou,and T. Fogarty, Eds., Athens, Greece, 2002, pp. 95–100.
A. Nebro, J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, “Designissues in a multiobjective cellular genetic algorithm,” inEvolutionaryMulti-Criterion Optimization. 4th International Conference, EMO 2007,ser. Lecture Notes in Computer Science, S. Obayashi, K. Deb, C. Poloni,T. Hiroyasu, and T. Murata, Eds., vol. 4403. Springer, 2007, pp. 126–140.
F. Ortuño, O. Valenzuela, F. Rojas, H. Pomares, J. Florido, J. Urquiza,and I. Rojas, “Optimizing multiple sequence alignments using a geneticalgorithm based on three objectives: structural information, non-gapspercentage and totally conserved columns.”Bioinformatics (Oxford,England), vol. 29, no. 17, pp. 2112–21, Sep. 2013. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/23793754
F. J. M. da Silva, J. M. S. Pérez, J. A. G. Pulido, andM. a. V. Rodríguez, “Parallel Niche Pareto AlineaGA–an evolutionary multiobjective approach on multiple sequence alignment.”Journal of integrative bioinformatics, vol. 8, no. 3, p. 174, 2011. [Online].Available: http://www.ncbi.nlm.nih.gov/pubmed/21926437
M. Kaya, A. Sarhan, and R. Abdullah, “Multiple sequencealignmentwithaffinegapbyusingmulti-objectivegeneticalgorithm.”Computer methods and programs in biomedicine, vol. 114, no. 1, pp. 38–49, Apr. 2014. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/24534604
F. P. M. Abbasi, L. Paquete, “Local search for multiobjective multiplesequence alignment,” inBioinformatics and Biomedical Engineering, ser. Lecture Notes in Computer Science, F. Ortuño and I. Rojas, Eds.Springer International Publishing, 2015, vol. 9044, pp. 175–182.
M. Dayhoff, R. Schwartz, and B. B.C. Orcutt, “A model of evolutionarychange in proteins,”In Atlas of Protein Sequences and Structure, vol. 5,pp. 345–352, 1978.
S. Henikoff and J. Henikoff, “Aminoacid substitution matrices fromprotein blocks,”Proceedings of the National Academy of Sciences,vol. 89, no. 22, pp. 10 915–10 919, 1992.
A. Nebro, J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, “Mocell: Acellular genetic algorithm for multiobjective optimization,”International Journal of Intelligent Systems, vol. 24, no. 7, pp. 723 – 725, 2009.
L. Bradstreet, The hypervolume indicator for multi-objective optimisation: calculation and use. University of Western Australia, 2011.
E. Zitzler, L. Thiele, M. L. anb C.M. Fonseca, and V. da Fonseca,“Performance assessment ofmultiobjective optimizers: An analysis andreview,”IEEE Trans. on Evolutionary Computation, vol. 7, no. 2, pp.117 – 132, 2003.
G. Raghava, S. M. Searle, P. C. Audley, J. D. Barber, and G. J. Barton,“Oxbench: A benchmark for evaluation of protein multiple sequencealignment accuracy,”BMC Bioinformatics, vol. 4, no. 1, pp. 1–23,2003. [Online]. Available: http://dx.doi.org/10.1186/1471-2105-4-47
P. I. W. de Bakker, A. Bateman, D. F. Burke, R. N. Miguel ,K. Mizuguchi, J. Shi, H. Shirai, and T. L. Blundell, “Homstrad: adding sequence information to structure-based alignments of homologous protein families,” Bioinformatics, vol.17, no.8, pp.748–749, 2001. [Online]. Available: http://bioinformatics.oxfordjournals.org/content/17/8/748.abstract
R. Edgar, “Muscle: multiple sequence alignment with high accuracy and high throughput,” Nucleic Acids Research, vol.32, no.5, pp.1792–1797, 2004.[Online]. Available: http://nar.oxfordjournals.org/content/32/5/1792.abstract
J. Thompson, P. Koehl, and O. Poch, “Balibase 3.0: latest developmentsof the multiple sequence alignment benchmark,”Proteins, vol. 61, pp.127–136, 2005.
H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig,I. Shindyalov, and P. Bourne, “The protein data bank,”Nucleic AcidsResearch, vol. 28, no. 1, pp. 235–242, 2000. [Online]. Available:http://nar.oxfordjournals.org/content/28/1/235
A. Nebro, J. J. Durillo, and M. Vergne, “Redesigning the jmetalmulti-objective optimization framework,” inProceedings of theCompanion Publication of the 2015 Annual Conference on Geneticand Evolutionary Computation, ser. GECCO Companion ’15.NewYork, NY, USA: ACM, 2015, pp. 1093–1100. [Online]. Available:http://doi.acm.org/10.1145/2739482.2768462
Descargas
Publicado
Número
Sección
Licencia
Aviso de derechos de autor/a
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la Creative Commons Attribution-Non-Commercial-Share-Alike 4.0 International, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores a compartir su trabajo en línea (por ejemplo: en repositorios institucionales o páginas web personales) antes y durante el proceso de envío del manuscrito, ya que puede conducir a intercambios productivos, a una mayor y más rápida citación del trabajo publicado.
Descargo de Responsabilidad
LAJC en ningún caso será responsable de cualquier reclamo directo, indirecto, incidental, punitivo o consecuente de infracción de derechos de autor relacionado con artículos que han sido presentados para evaluación o publicados en cualquier número de esta revista. Más Información en nuestro Aviso de Descargo de Responsabilidad.