Sistema de Recomendación de Asignaturas en el Proceso de Registro y Matrícula de Estudiantes Universitarios

Autores/as

  • Milton Mariduena-Arroyave Universidad de Guayaquil
  • Lorenzo Cevallos-Torres Universidad de Guayaquil
  • Miguel Botto-Tobar Universidad de Guayaquil

Palabras clave:

Sistemas de Recomendación, Asignaturas, Récord_estudiantil, Mapas Cognitivos Difusos

Resumen

Actualmente, los sistemas de
recomendación son ampliamente utilizados para
analizar preferencias de usuarios y sugerirles
ítems afines. En el ámbito universitario, el
momento en el cual una asignatura es elegida
por un estudiante para su siguiente etapa
educativa, es monitoreado por un Consejero
Académico, quien de acuerdo con el récord
estudiantil, y comparando perfiles similares
a lo largo de su carrera, debe recomendar
cuáles asignaturas, podrían contribuir al
rendimiento y aprendizaje del estudiante. El
presente trabajo representó un esfuerzo por
diseñar un recomendador que se apoya en el
modelado de las relaciones causales existentes
entre las asignaturas del pénsum curricular de
una carrera universitaria, empleando mapas
cognitivos difusos y operadores de agregación
OWA. Se aplicó el flujo de trabajo del modelo
propuesto y su implementación, a través de la
herramienta informática (FCM-Decision). Se
desarrolló un estudio de caso con los récords
estudiantiles de una universidad en Guayaquil,
y además, se realizó un experimento para
probar los resultados de interpretabilidad con
otros modelos existentes. Entre los principales
resultados están la fiabilidad de las métricas
para el análisis estático de mapas difusos, la
similitud respecto a un estudiante objetivo, y la
importancia que cada asignatura representa en
un nuevo registro.

DOI

Descargas

Los datos de descarga aún no están disponibles.

Referencias

J. Merigó, “New extensions to the OWA operators and its application in decision making,” PhD Thesis, Department of Business Administration, University of Barcelona, 2008.

A.M. Sharif and Z . Irani, “Applying a fuzzy-morphological approach to complexity within management decision making,” Emerald Group Publishing Limited. pp. 930-961, 2006.

M. Glykas and P. Groumpos, “Fuzzy Cognitive Maps: Basic Theories and Their Application to Complex Systems,” in Fuzzy Cognitive Maps, Berlin: Springer, pp. 1-22, 2010.

C.W. Ping, “A Methodology for Constructing Causal Knowledge Model from Fuzzy Cognitive Map to Bayesian Belief Network,” in Department of Computer Science. Chonnam National University, 2009.

G. Pajares, J. Sánchez-Lladó and C. López-Martínez, “Fuzzy Cognitive Maps Applied to Synthetic Aperture Radar Image Classifications Advances Concepts for Intelligent Vision Systems,” Berlin: Springer, pp. 103-114, 2011.

J, Carvalho, “Rule Based Fuzzy Cognitive Maps in Humanities Social Sciences and Economics,” Berlin: Springer, pp. 289-300, 2012.

D.k Iakovidis and E. Papageorgiou, “Intuitionistic Fuzzy Cognitive Maps for Medical Decision Making,” Information Technology in Biomedicine, IEEE Transactions on. 15(1): pp. 100-107, 2011.

L. Curia and A. Lavalle, “Estrategias de decisión en sistemas dinámicos: aplicando mapas cognitivos difusos aplicación a un ejemplo socio–económico,” Revista de Gestão da Tecnologia e Sistemas de Informação. 8(3): pp. 663-680, 2011.

R. Srivastava, M. Buche and T. Roberts, “Belief Function Approach to Evidential Reasoning in Causal Maps,” in Causal Mapping for Research in Information Technology, Idea Group Pub., 2005.

F. Herrera, S. Alons, F. Chiclana and E. Herrera-Viedma, “Computing with words in decision making: foundations, trends and prospects,” Fuzzy Optimization and Decision Making. 8(4), pp. 337-364, 2009.

M. Doumpos and C. Zopounidis, “Preference disaggregation and statistical learning for multicriteria decision support: A review,” European Journal of Operational Research. 209(3): pp. 203-214, 2010.

G.F Barberis and M.C.E. Ródenas, “La Ayuda a la Decisión Multicriterio: orígenes, evolución y situación actual,” VI Congreso Internacional de Historia de la Estadística y de la Probabilidad. Valencia, 2011.

G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 6, pp. 734-749, 2016.

M.J. Pazzani, “A framework for collaborative, content-based and demographic filtering,” Artif. Intell. Rev., vol. 13, no. 5-6, pp. 393-408, 2015.

M.j. Pazzani and D. Billsus, Learning and Revising User Profiles: The Identification of Interesting Web Sites, Kluwer Academic Publishers, pp. 313-331, 1997.

J.D. Ullman, “Principles of database and knowledge-base systems,” vol. 1, Computer Science Press, Inc., pp. 631, 2017.

R, Burke, K. J. Hammond, and B. C.Young, “Knowledge-based Navigation of Complex Information Spaces,” Proceedings of the Thirteenth National Conference on Artificial Intelligence, AAAI Press/MIT Press, 2014.

B. Bezerra and F.D. Carvalho, “A symbolic hybrid approach to face the new user problem in recommender systems,” Ai 2004: Advances in Artificial Intelligence, Proceedings, Lecture Notes in Artificial Intelligence 3339, Berlin: Springer, pp. 1011-1016, 2016.

T. Murakami, K. Mori and R. Orihara, “Metrics for evaluating the serendipity of recommendation lists,” New Frontiers in Artificial Intelligence, pp. 40–46, 2008.

B. Kosko, “Fuzzy cognitive maps,” International Journal of Man-Machine Studies. 24(1): pp. 65-75, 1986.

B. Sarwar, G. Karypis, J. Konstan and J. Riedl, “Analysis of recommendation algorithms for e-commerce,” ACM Press, pp. 158-167, 2000.

J. Breese, D. Heckerman and C. Kadie, “Empirical Analysis of Predictive Algorithms for Collaborative Filtering,”Proc. Uncertainty in Artificial Intelligence. Proceedings of the Fourteenth Conference, pp. 18, 2016.

M. Condliff, D. Madigan, D. Lewis and C. Posse, “Bayesian Mixed-Effects Models for Recommender Systems,” Proceedings of the ACM SIGIR Workshop on Recommender Systems: Algorithms and Evaluation. 22nd Intl. Conf. on Research and Development in Information Retrieval, 2016.

L. Ungar and D. Foster, “Clustering Methods for Collaborative Filtering,” Proceedings of the Workshop on Recommendation Systems, AAAI Press, Menlo Park California, 1998.

D. Kim and B. Yum, “Collaborative filtering based on iterative principal component analysis,” Expert Syst. Appl., vol. 28, no. 4, pp. 823-830, 2015.

D. Billsus and M. Pazzani, “Learning Collaborative Information Filters,” Proc. Proceedings of the 15th International Conference on Machine Learning, Morgan Kaufmann Publishers Inc., San Francisco, CA, pp. 46-54, 2017.

R.M. Axelrod, Structure of decision: The cognitive maps of political elites. Princeton University Press Princeton, NJ, 1976.

J.L Salmeron, Supporting decision makers with Fuzzy Cognitive Maps. Industrial Research Institute, Inc. pp. 53-59, 2009.

J. Salmeron and E. Papageorgiou, “A Fuzzy Grey Cognitive Maps-based Decision Support System for radiotherapy treatment planning,” Knowledge-Based Systems, pp. 151-160, 2012.

S. Bueno and J. Salmeron, Benchmarking main activation functions in fuzzy cognitive maps. Expert Systems with Applications, pp. 5221-5229, 2009.

C. Puente-Agueda, Causality in Sciencie. Pensamiento Matemático. pp. 12, 2011.

R. Burke, Book Knowledge-based Recommender Systems, vol. 69, Supplement 32, Marcel Dekker, 2014.

L. A. Zadeh, “Fuzzy sets. Information and Control,” pp.338-353, 1965.

B. M. Brio and A. S. Molina, Redes Neuronales y Sistemas Borosos, 2th ed., Alfaomega, 2001.

G. J. Klir and B. Yuan, Fuzzy sets and fuzzy logic, New Jersey: Prentice Hall, 1995.

L. Cevallos, M. Leyva, M. Peña, E. Santos and A. Guijarro, “The Extended Hierarchical Linguistic Model in Fuzzy Cognitive Maps,” CITI 2016, Guayaquil: SPRINGER, pp. 39-50, 2016.

L. J. Mazlack, “Causal modeling approximations in the medical domain,” IEEE International Conference on Fuzzy systems, June 2011.

M. R. Berthold and D. J. Hand, Intelligent Data Analysis: An Introduction, Springer, 2010.

M. S. Garcia-Cascales and M. T. Lamata, “Nueva aproximación al método tópsis difuso con etiquetas lingüísticas,” ESTYLF, Huelva, 2010.

M. Espinilla-Estévez, “Nuevos modelos de evaluación sensorial con información lingüística,” (DEA), Universidad de Jaén, Jaen, 2009.

F. Herrera, S. Alonso, F. Chiclana and E. Herrera-Viedma, “Computing with words in decision making: foundations, trends and prospects,” Fuzzy Optimization and Decision Making, pp. 337-364, 2009.

K. Pérez-Teruel, M. Leyva-Vázquez, M. Espinilla and V. Estrada-Sentí, “Computación con palabras en la toma de decisiones mediante mapas cognitivos difusos,” Revista Cubana de Ciencias Informáticas, pp. 19-34, 2014.

F. Herrera and L. Martínez, “A 2-tuple fuzzy linguistic representation model for computing with words Fuzzy Systems,” IEEE Transactions on, pp. 746-752, 2000.

A. Altay and G. Kayakutlu, “Fuzzy cognitive mapping in factor elimination: A case study for innovative power and risks,” Procedia Computer Science, pp. 1111-1119, 2011.

S. Samarasinghea and G. Strickert, “A New Method for Identifying the Central Nodes in Fuzzy Cognitive Maps using Consensus Centrality Measure,” 19th International Congress on Modelling and Simulation. Perth, Australia, 2011.

M. Y. Leyva-Vázquez, K. Pérez Teurel, A. Febles Estrada and J. Gulín-González, “Modelo para el análisis de escenarios basado en mapas cognitivos difusos,” Ingenieria y Universidad, 2013.

R. Yager, “Quantifier guided aggregation using OWA operators,” International Journal of Intelligent Systems, pp. 49–73, 1996.

R. Yager, “Centered OWA operators,” in Soft Computing pp. 631-639, 2007.

J. M. Doña-Fernández, “Modelado de los procesos de toma de decisión en entornos sociales mediante operadores de agregación OWA,” PhD Thesis, Universidad de Málaga, 2008.

B. M. Elomda, H. A. Hefny and H. A. Hassan, “An extension of fuzzy decision maps for multi-criteria decision-making,” Egyptian Informatics Journal, pp. 147-155, 2013.

G. H. Tzeng, W.H. Chen, R. Yu and M. L. Shih, “Fuzzy decision maps: a generalization of the DEMATEL methods,” in Soft Computing, pp. 1141-1150, 2010.

M. Leyva, J. Hechavarria, N. Batista, J. A. Alarcon and O. Gomez, “A framework for PEST analysis based on fuzzy decision maps,” Revista ESPACIOS, 2018.

A. Betancourt-Vázquez, K. Pérez-Teruel and M. Leyva-Vázquez, “Modeling and analyzing non-functional requirements interdependencies with neutrosofic logic,” Neutrosophic Sets and Systems, 2015.

O. Reimar, M. Leyva and Y. Barroso, “Herramienta para la simulación y análisis de mapas cognitivos difusos,” VI Taller de Inteligencia Artificial. UCIENCIA, Habana, Cuba, 2012.

M. Leyva-Vázquez, “Modelo de Ayuda a la Toma de Decisiones Basado en Mapas Cognitivos Difusos,” UCI, La Habana, 2013.

M. Y. Leyva-Vázquez, R. Rosado-Rosello and A. Febles-Estrada, “Modelado y análisis de los factores críticos de éxito de los proyectos de software mediante mapas cognitivos difusos,” in Ciencias de la Información, pp. 41-46, 2012.

W. Stach, “Learning and aggregation of fuzzy cognitive maps-An evolutionary approach,” PhD Thesis, University of Alberta, 2011.

M. Stajdohar and J. Demsar, “Interactive Network Exploration with Orange,” Journal of Statistical Software, pp. 1-24, 2013.

W. Stach, W. Pedrycz and L. A. Kurgan, “Learning of fuzzy cognitive maps using density estimate,” Systems, Man, and Cybernetics, Part B: Cybernetics, pp. 900-912, 2012.

Descargas

Publicado

2020-07-03

Número

Sección

Artículos Científicos para el número regular

Cómo citar

[1]
“Sistema de Recomendación de Asignaturas en el Proceso de Registro y Matrícula de Estudiantes Universitarios”, LAJC, vol. 7, no. 1, pp. 22–47, Jul. 2020, Accessed: Oct. 08, 2025. [Online]. Available: https://lajc.epn.edu.ec/index.php/LAJC/article/view/172