Modelos de Aprendizaje Automático basados en CRISP-DM para el Análisis de los niveles de Depresión en los estudiantes de la Escuela Politécnica Nacional
Palabras clave:
Trastornos de Depresión, Aprendizaje Automático, Selección de Características, Ciencia de datos, Inventario de Depresión de Beck II, CRISP- DM, PythonResumen
El presente proyecto analiza las variables de depresión que puede tener un estudiante universitario de la Escuela Politécnica Nacional (EPN) mediante modelos de aprendizaje automático (ML). Participaron un total de 302 estudiantes de distintas carreras quienes completaron de manera voluntaria y anónima una encuesta en línea constituida por el Inventario de Depresión de Beck II (BDI-II). Las 19 preguntas de la encuesta están relacionadas al estilo de vida promedio de un estudiante de la EPN y fueron revisadas y avaladas sobre su relación con trastornos depresivos por una profesional en el campo de la psicología. Se utilizó la metodología CRISP-DM para las fases del proyecto que consistieron en el análisis de la situación actual, planteamiento de objetivos, recolección, análisis y preparación de datos, construcción de modelos de ML para predecir la severidad de depresión con base en las métricas de BDI-II y evaluación de modelos. Se obtuvo un modelo con 0.59 de exactitud y se verificó que las variables de género, edad y relaciones interpersonales son las más significativas al determinar la severidad de depresión.
Descargas
Publicado
Número
Sección
Licencia
Aviso de derechos de autor/a
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la Creative Commons Attribution-Non-Commercial-Share-Alike 4.0 International, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores a compartir su trabajo en línea (por ejemplo: en repositorios institucionales o páginas web personales) antes y durante el proceso de envío del manuscrito, ya que puede conducir a intercambios productivos, a una mayor y más rápida citación del trabajo publicado.
Descargo de Responsabilidad
LAJC en ningún caso será responsable de cualquier reclamo directo, indirecto, incidental, punitivo o consecuente de infracción de derechos de autor relacionado con artículos que han sido presentados para evaluación o publicados en cualquier número de esta revista. Más Información en nuestro Aviso de Descargo de Responsabilidad.