Estimation of parameters and state variables in an alcoholic fermentation process in a fed-batch bioreactor
Keywords:
particle filter, bioreactor, kinetic parameters, alcoholic fermentation, mathematical modelingAbstract
Energy consumption in the world is based on two types of sources: fossil fuels and renewable energy. In this case, bioethanol presents itself as an alternative resource to fossil fuels, whose production can occur through specific processes called alcoholic fermentation. In parallel, the growing demand for energy has motivated scientists to develop even more efficient systems and technologies. In this work, mathematical modeling and simulation was performed to represent the kinetics of alcoholic fermentation in a fed-batch bioreactor. The modeling was developed taking into account the microbial inhibition caused by the presence of excess substrate and product through the Tosetto and Hoppe-Hansford models. In the simulation, Bayesian statistics was used as a tool to estimate the kinetic parameters and the state variables of the bioprocess. The estimates were obtained through the use of a particle filter proposed by Liu and West, with 500 particles and experimental measurements from the literature, whose approach presented 99% accuracy and proved to be effective for describing alcoholic fermentation.
Downloads
Published
Issue
Section
License
Copyright Notice
Authors who publish this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-Non-Commercial-Share-Alike 4.0 International 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Disclaimer
LAJC in no event shall be liable for any direct, indirect, incidental, punitive, or consequential copyright infringement claims related to articles that have been submitted for evaluation, or published in any issue of this journal. Find out more in our Disclaimer Notice.