Electricity Energy Demand Prediction Using Computational Intelligence Techniques
Palabras clave:
Electric Energy, Machine Learning, Meta- Heuristic, Grey Wolf OptimizationResumen
Energy is an important pillar for the economic development of a country. The demand for electricity is something that continues to grow, one of the contributing factors is the emergence of various technological equipment and the consequent use by the population. There are several resources that can be exploited to generate electricity, with hydroelectric power stations being one of the most used resources. As electrical energy cannot be stored, there is a need to estimate its consumption, looking for a way to meet this energy demand. In this context, this study seeks to apply machine learning techniques, using the Grey Wolf Optimization (GWO) meta-heuristic to optimize regression models, to predict the demand for electricity in Brazil, and it aims to estimate how much energy should be produced. For the predictions, the period between the years 2017 to 2022 was used, totaling around 2,190 samples. The methodology involves pre-processing, crossvalidation, parameters optimization and regression. The results show that Random Forest performed well in the experiments carried out, presenting a coefficient of determination (R2) of 0.8751, Root Mean Squared Error (RMSE) of 0.0554 and Mean Absolute Error (MAE) of 0.0348 in the best model.
Descargas
Descargas
Publicado
Número
Sección
Licencia
Aviso de derechos de autor/a
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la Creative Commons Attribution-Non-Commercial-Share-Alike 4.0 International, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores a compartir su trabajo en línea (por ejemplo: en repositorios institucionales o páginas web personales) antes y durante el proceso de envío del manuscrito, ya que puede conducir a intercambios productivos, a una mayor y más rápida citación del trabajo publicado.
Descargo de Responsabilidad
LAJC en ningún caso será responsable de cualquier reclamo directo, indirecto, incidental, punitivo o consecuente de infracción de derechos de autor relacionado con artículos que han sido presentados para evaluación o publicados en cualquier número de esta revista. Más Información en nuestro Aviso de Descargo de Responsabilidad.