Identification of Nano-Beams Rigidity Coefficient: A Numerical Analysis Using the Landweber Method

  • Elisa Ferreira Medeiros Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense, Pelotas, RS http://orcid.org/0000-0002-5356-8244
  • Adriano De Cezaro Instituto de Matemática, Estatística e Física, Universidade Federal do Rio Grande, FURG http://orcid.org/0000-0001-8431-9120
  • Fabiana Travessini De Cezaro Instituto de Matemática, Estatística e Física, Universidade Federal do Rio Grande, FURG http://orcid.org/0000-0001-9401-5315
Keywords: micro/nano-beams, inverse problem, fractal media, Landweber's method

Abstract

Due to their supporting function, beams are one of the main elements in structural projects. With the intense technological development in the field of nanotechnology, beams at micro- and nanoscales have become objects of intense study and research interest, see for example [8]. In this approach, we analyze numerically the inverse problem of identifying the stiffness coefficient in micro-nano-beams as a function that implicitly depends on the fractal media map for the continuum from strain measurements. Such a problem is unstable with respect to noise in strain measurements, which is inherent in practical problems. We introduce the equations that compose Landweber's iterative regularization method as a strategy to obtain a stable and convergent approximate solution with respect to the noise level in the measurements. We show some scenarios with simulated data for identifying the stiffness coefficient for different noise levels in measurements and for different coefficient of transformation of fractal medium. The results found numerically show that Landweber's method is a regularization strategy for the problem of identifying the stiffness coefficient in micro/nano-beams.

DOI

Downloads

Download data is not yet available.

References

H. Brezis, “Functional Analysis, Sobolev Spaces and partial differential equations,” vol. 2. New York: Springer, 2011.

B. Kaltenbacher, A. Neubauer, and O. Scherzer, “Iterative regularization methods for nonlinear ill-posed problems,” de Gruyter, 2008.

A. Kirsch, “An introduction to the mathematical theory of inverse problems,” vol. 120. New York: Springer, 2011.

E.F. Medeiros, "Identificação do coeficiente de rigidez no modelo de Euler-Bernoulli para vigas,” M.S. thesis, FURG, Rio Grande, 2019.

E.F. Medeiros, A. De Cezaro, F. Travessini de Cezaro, “Métodos iterativos de regularização para identificação do coeficiente de rigidez na equação de Euler-Bernoulli para vigas,” Trends in Computational and Applied Mathematics, vol. 23, no. 2, 2022.

Z. Rahimi, S.R. Ahmadi, and W. Sumelka, “Fractional Euler-Bernoulli Beam Theory Based on the Fractional Strain-Displacement Relation and its Application in Free Vibration, Bending and Buckling Analyses of Micro/Nanobeams,” Acta Physica Polonica, A., vol. 134, no. 2, 2018.

O.M. Starzewski, J, Li, H. Joumaa, and P.N. Demmie, “From fractal media to continuum mechanics,” ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol. 94, pp. 373-401, 2014.

V. Tarasov, “Continuous medium model for fractal media,” Physics Letters A, vol. 336, pp. 167-174, 2005.

L. Tonetto, “Modelos elásticos não-clássicos para vibrações de micro e nanovigas,” Ph.D. dissertation, UFRGS, Porto Alegre, 2015.

Published
2023-07-07
How to Cite
[1]
E. Medeiros, A. De Cezaro, and F. De Cezaro, “Identification of Nano-Beams Rigidity Coefficient: A Numerical Analysis Using the Landweber Method”, LAJC, vol. 10, no. 2, pp. 96-105, Jul. 2023.
Section
Research Articles for the Regular Issue