The Pennes bioheat equation with Caputo fractional derivative applied to the thermal treatment of ductal breast cancer

Authors

Keywords:

Penne’s equation, Magnetic hyperthermia

Abstract

This article examines the Pennes bioheat equation in both its classical form and its extension using the Caputo fractional derivative to model tumor heating through magnetic hyperthermia with SPIONs. In the classical model (α = 1.0), simulations reach and maintain temperatures above 42 °C, consistent with the clinical and experimental results of Caizer et al., where nanoparticles raise and stabilize tissue within the therapeutic range. When incorporating the fractional derivative (α < 1.0), thermal memory effects emerge, allowing a more realistic description of tissue dynamics. Although the explicit L1 method exhibits numerical instability, the implicit L1 method provides stable and physically coherent solutions, showing slower and more localized heating for fractional orders, as expected in tissues with delayed diffusion. These fractional results computationally correspond to the three-dimensional simulations of Rahpeima & Lin, which report non-monotonic temperature patterns and diffusion dependent on SPION concentration. Overall, the implicit L1 method validates both the experimental behavior observed by Caizer and the numerical dynamics reported by Rahpeima & Lin, demonstrating that the fractional approach is promising for modeling tumor hyperthermia when stable numerical schemes are employed.

Downloads

Download data is not yet available.

Author Biography

  • Eder Antonio Linares, Universidad del Atlántico

    Licenciado en Matemática y Física, Magíster en Física Aplicada y Candidato a Doctor en Ciencias Físicas. Cuenta con más de 20 años de experiencia docente en los niveles de Bachillerato, Educación Tecnológica y Educación Universitaria, además de amplia trayectoria en la asesoría metodológica de investigaciones de pregrado y posgrado. Ha participado como ponente en eventos científicos nacionales e internacionales. Actualmente desarrolla investigación en oncología matemática y en el diseño de nanoestructuras con fines teranósticos. Es docente de la Universidad del Atlántico, donde trabaja con la Facultad de Educación en los programas de Licenciatura en Matemáticas y Ciencias Naturales, y de la Corporación Universitaria Americana en Barranquilla, Colombia, adscrito al Departamento de Ciencias Básicas.

References

[1] Huancajulca, R., & del Rocío Mariet, P. (2023). Risk factors for recurrence of non-metastatic ductal breast carcinoma in patients at the Hospital de Alta Complejidad Virgen de la Puerta (2019–2023) [Undergraduate thesis, Universidad Privada Antenor Orrego]. https://purl.org/pe-repo/ocde/ford#3.02.27

[2] Urrego-Novoa, J. R., Hincapié-Echeverry, A. L., & Díaz-Rojas, J. A. (2024). Net costs of breast cancer care in a health promoting entity in Colombia. Revista de la Facultad de Medicina, 72(3), e112282

[3] García-Valdés, N., Casado-Méndez, P. R., Ricardo-Martínez, D., Santos-Fonseca, R. S., Gonsalves-Monteiro, A., & Sambu, Z. (2023). Prevalence of complications in mastectomized breast cancer patients. Revista Médica Electrónica, 45(2), 250–261.

[4] Tovar, A. D. M., Trujillo, Y. M. C., Huertas, K. T. P., & Sánchez, A. M. C. (2025). Social determinants influencing healthcare access for women with breast cancer in Huila, Colombia. Ciencia Latina Revista Científica Multidisciplinar, 9(1), 12665–12684.

[5] Fahim, Y. A., Hasani, I. W., & Ragab, W. M. (2025). Promising biomedical applications with superparamagnetic nanoparticles. European Journal of Medical Research, 30(1), 441.

[6] Périgo, E. A., Hemery, G., Sandre, O., Ortega, D., Garaio, E., Plazaola, F., & Teran, F. J. (2015). Fundamentals and advances in magnetic hyperthermia [Preprint]. arXiv. https://arxiv.org/abs/1510.06383

[7] Gilchrist, R. K., Medal, R., Shorey, W. D., Hanselman, R. C., Parrott, J., & Taylor, C. B. (1957). Selective inductive heating of lymph nodes. Annals of Surgery, 146(4), 596–606. https://doi.org/10.1097/00000658-195710000-00007

[8] Romero Coripuna, R. L., Cordova Fraga, T., Basurto Islas, G., Villaseñor Mora, C., & Guzman Cabrera, R. (2018). Modeling of Temperature Distribution of Fe3O4 Nanoparticles for Oncological Therapy. Computación y Sistemas, 22(4), 1573-1579.

[9] Pennes, H. H. (1948). Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology, 1(2), 93–122.

[10] Jihad-Jebbar, A. (2025). Application of electromagnetic fields and hyperthermia in cancer treatment [Doctoral dissertation, University of Valencia, Doctoral Program in Physiology]. https://roderic.uv.es/rest/api/core/bitstreams/3c0c3d74-cfaf-46f9-8761-b8d423036024/content

[11] Caputo, M. (1967). Linear models of dissipation whose Q is almost frequency independent—II. Geophysical Journal International, 13(5), 529–539.

[12] Goya, G. F., Lima, E., Arelaro, A. D., Torres, T. E., Rechenberg, H. R., Rossi, L., Marquina, C., & Ibarra, M. R. (2013). Magnetic hyperthermia with Fe₃O₄ nanoparticles: The influence of particle size on energy absorption. Journal of Magnetism and Magnetic Materials. https://arxiv.org/abs/1302.691

[13] Liu, P., et al. (2018). Size-dependent magnetic and inductive heating properties of Fe₃O₄ nanoparticles. Physical Chemistry Chemical Physics, 20, 801–811.

[14] Hamza, NFA y Aljabair, S. (julio de 2023). Estudio experimental de la mejora de la transferencia de calor mediante un nanofluido híbrido y un inserto de cinta retorcida en intercambiadores de calor. En la IV CONFERENCIA CIENTÍFICA INTERNACIONAL DE CIENCIAS DE LA INGENIERÍA Y TECNOLOGÍAS AVANZADAS (Vol. 2830, N.º 1, p. 070009). AIP Publishing LLC

[15] Zapata Isidro, D. (2022). Síntesis de derivados aminoácidos de naftoquinona y su acoplamiento a nanotubos de carbono funcionalizados. REPOSITORIO NACIONAL CONACYT.

[16] Lemine, O. M., Algessair, S., Madkhali, N., Al Najar, B., & El Boubbou, K. (2023). Assessing the heat-generation and self-heating mechanism of superparamagnetic Fe₃O₄ nanoparticles for magnetic hyperthermia: Effects of concentration, frequency, and magnetic field. Nanomaterials, 13(3), 453. https://doi.org/10.3390/nano13030453

[17] Pucci, C., Degl’Innocenti, A., Gümüş, M. B., & Ciofani, G. (2022). Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: Recent advancements, molecular effects, and future directions. Biomaterials Science, 10, 2103–2121. https://doi.org/10.1039/D1BM01963E

[18] Phong, L. V. H., & Lam, T. D. (2020). Increase of magnetic hyperthermia efficiency due to optimal size of Fe₃O₄ nanoparticles. Journal of Nanoparticle Research, 22, 20. https://doi.org/10.1007/s11051-020-04986-5

[19] Espinosa Rivas, E. I., & Linares y Miranda, R. (2023). SAR and temperature increase in a head model composed of several tissues produced by two WiFi devices working on the 2.4 GHz band. Científica, 27(2). Retrieved from https://biblat.unam.mx/es/revista/cientifica-mexico-d-f

[20] Dulf, E. H., Pop, C. I., & Dulf, F. V. (2012). Fractional calculus in 13C separation column control. Signal, Image and Video Processing, 6(3), 479–485. https://doi.org/10.1007/s11760-012-0335-z

[21] Lathulerie, D. N. N. (2018). Evaluation of magnetic hyperthermia therapy using perfusion imaging models for glioblastoma multiforme [Doctoral dissertation, Venezuelan Institute for Scientific Research].

[22] Panda, J. y Das, D. (2025). Nanosistemas basados en nanopartículas superparamagnéticas de óxido de hierro para la teranóstica del cáncer. Medicina Traslacional Global , 4 (2), 31-50.

[23] Quintero, M. (2012). Mathematical model of hyperthermia procedure for cancer treatment [Master’s thesis, Universidad Nacional de Colombia].

[24] Caizer C, Caizer-Gaitan IS, Watz CG, Dehelean CA, Bratu T, Soica C. High efficacy on the death of breast cancer cells using SPMHT with magnetite cyclodextrins nanobioconjugates. Pharmaceutics. 2023;15:1145. doi:10.3390/pharmaceutics15041145.

[25] Rahpeima, R., & Lin, C. A. (2022). Numerical study of magnetic hyperthermia ablation of breast tumor on an anatomically realistic breast phantom. Plos one, 17(9), e0274801

Downloads

Published

2026-01-08

Issue

Section

Research Articles for the Regular Issue

How to Cite

[1]
“The Pennes bioheat equation with Caputo fractional derivative applied to the thermal treatment of ductal breast cancer”, LAJC, vol. 13, no. 1, pp. 54–68, Jan. 2026, Accessed: Jan. 20, 2026. [Online]. Available: https://lajc.epn.edu.ec/index.php/LAJC/article/view/461