Arquitectura de Analítica de Big Data para Aplicaciones de Ciberseguridad

Autores/as

  • Roberto Omar Andrade Escuela Politécnica Nacional
  • Luis Tello-Oquendo Universidad Nacional de Chimborazo
  • Susana Cadena-Vela Universidad Central del Ecuador
  • Patricia Jimbo-Santana Universidad Central del Ecuador
  • Juan Zaldumbide Escuela Politécnica Nacional
  • Diana Yacchirema Escuela Politécnica Nacional

Palabras clave:

Big data, ciberoperaciones, ciberseguridad

Resumen

Los cambios tecnológicos y  sociales  en  la  era de la información actual plantean nuevos desafíos para los analistas de seguridad. Se buscan nuevas estrategias y soluciones de seguridad para mejorar las operaciones de seguridad relacionadas con la detección y análisis de amenazas y ataques a la seguridad. Los analistas de seguridad abordan los desafíos de seguridad al analizar grandes cantidades de datos de registros de servidores, equipos de comunicación, soluciones de seguridad y blogs relacionados con la seguridad de la información en diferentes formatos estructurados y no estructurados. En este artículo, se examina la aplicación de big data para respaldar algunas actividades de seguridad y modelos conceptuales para generar conocimiento que se pueda utilizar  para  la  toma de decisiones o la  automatización  de  la  acción  de  respuesta de seguridad. En concreto, se presenta una metodología de procesamiento   masivo   de   datos    y   se   introduce una arquitectura  de  big   data  ideada   para   aplicaciones de ciberseguridad. Esta arquitectura identifica patrones de comportamiento anómalos y tendencias para anticipar ataques de ciberseguridad caracterizados como relativamente aleatorios, espontáneos y fuera de lo común.

DOI

Descargas

Los datos de descarga aún no están disponibles.

Referencias

IBM. AI for cybersecurity. [Online]. Available: https://www.ibm.com/security/artificial-intelligence [Accessed: Nov.25, 2020].

Kaspersky. New IoT-malware grew three-fold in H1 2018. [Online]. Availablet: https://www.kaspersky.com/ [Accessed: Nov.25, 2020].

Microsoft. Enhancing Cybersecurity with Big Data: Challenges and Opportunities. [Online]. Availablet: https://query.prod.cms.rt.microsoft.com [Accessed: Nov.25, 2020].

SK., Kamaruddin and V. Ravi, “Credit Card Fraud Detection using Big Data Analytics: Use of PSOAANN based One-Class Classi- fication,” In Proceedings of the International Conference on Informatics and Analytics (ICIA-16). ACM, New York, NY, USA, Article 33 , 8 pages, 2016.

FBI. Audit of the Federal Bureau of Investigation’s Cyber Threat Priori- tization . [Online]. Available: https://oig.justice.gov/reports/2016/ [Accessed: Nov.25, 2020].

Kaspersky. DDoS attacks in Q4 2016. [Online]. Available: https://securelist.com/ddos-attacks-in-q4-2016/77412/ [Accessed: Nov.25, 2020].

P. Las Casas, V. Santos Dias, W. Meira Jr, and D. Guedes, “A Big Data Architecture for Security Data and Its Application to Phishing Characterization,” pp.36-41, 2016

NIST. Data Science. [Online]. Available: https://www.nist.gov/programs-projects/data-science [Accessed: Nov.25, 2020].

H. Rasheed, A. Hadi and M. Khader, “Threat Hunting Using GRR Rapid Response,” International Conference on New Trends in Computing Sciences (ICTCS), Amman, 2017, pp. 155–160.

NIST. Big Data Public Working Group. [Online]. Availablet: https://www.nist.gov/el/cyber-physical-systems/big-data-pwg [Accessed: Nov.25, 2020].

U. Fayyad, G. Piatetsky-Shapiro and P. Smyth, “From data mining to knowledge discovery in databases,” AI magazine, 17(3), pp. 37–37, 1996.

R. Alguliyev and Y. Imamverdiyev, “Big data: Big Promises for Information Security,” IEEE 8th International Conference on Application of Information and Communication Technologies (AICT), Astana, 2014, pp. 1–4.

S.R. Bandre, and J.N Nandimath, “Design consideration of Network Intrusion detection system using Hadoop and GPGPU,” 2015 International Conference on Pervasive Computing (ICPC), Pune, pp. 1– 6.

Bayer, Ulrich, P. Comparetti, C. Hlauschek, Ch. Kruegel, and E. Kirda, “Scalable, behavior-based malware clustering,” In NDSS, vol. 9, pp. 8–11. 2009.

J. Bin, M, Yan, H. Xiaohong, L, Zhaowen and S. Yi, “A Novel Real-Time DDoS Attack Detection Mechanism Based on MDRA Algorithm in Big Data,” Mathematical Problems in Engineering. 2016. pp. 1–10.

Z. Chen, H. Zhang, W.G. Hatcher, J. Nguyen and W. Yu, “A streaming-based network monitoring and threat detection system,” IEEE 14th International Conference on Software Engineering Research, Management and Applications (SERA), Towson, MD, 2016, pp. 31–37.

Cloudera. Cloudera cybersecurity. [Online]. Available: https://www.cloudera.com/ [Accessed: Nov.10, 2020].

A. Dauda, S. Mclean, A. Almehmadi and K. El-Khatib, “Big Data Analytics Architecture for Security Intelligence,” Proceedings of the 11th International Conference on Security of Information and Networks, 2018.

L. Fetjah, K. Benzidane, H.E. Alloussi, O.E Warrak, S. Jai-Andaloussi and A. Sekkaki, “Toward a Big Data Architecture for Security Events Analytic,” IEEE 3rd International Conference on Cyber Security and Cloud Computing (CSCloud), Beijing, 2016, pp. 190–197.

R. Fontugne, J. Mazel and K. Fukuda, “Hashdoop: A MapReduce framework for network anomaly detection,” IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON, 2014, pp. 494–499.

Hadoop. Apache Hadoop. [Online]. Available: https://hadoop.apache.org/ [Accessed: Nov.10, 2020].

C. Hsieh and T. Chan, “Detection DDoS attacks based on neural- network using Apache Spark,” International Conference on Applied System Innovation (ICASI), Okinawa, 2016, pp. 1–4.

Hortonworks. Ciberseguridad de los macrodatos. [Online]. Available: https://es.hortonworks.com/ [Accessed: Nov.10, 2020].

G.P.Gupta and M. Kulariya, “A Framework for Fast and Efficient Cyber Security Network Intrusion Detection Using Apache Spark,” Procedia Computer Science.

IBM. Watson and Cybersecurity: The Big Data challenge. [Online]. Available: https://www.ibm.com/blogs/think [Accessed: Nov.10, 2020].

IBM. Cognitive Cybersecurity Intelligence (CCSI) Group. [Online]. Available at: https://researcher.watson.ibm.com/researcher [Accessed: Nov.10, 2020].

IEEE. IEEE Special Interest Group (SIG). [Online]. Available: http://computing.northumbria.ac.uk/staff/FGPD3/sig-bdcsp/ [Accessed: Nov.10, 2020].

ITU. Study Group 17. [Online]. Available: https://www.itu.int/en/ITUT/about/groups/Pages/sg17.aspx [Accessed: Nov.10, 2020].

Z. Jia, C. Shen, X. Yi, Y. Chen, T. Yu and X.Guan, “Big- data analysis of multi-source logs for anomaly detection on network- based system,” 13th IEEE Conference on Automation Science and Engineering (CASE), 2017.

Lighari, S. N., and Hussain, D. M. A. (2017). Testing of algorithms for anomaly detection in Big Data using apache spark. 2017 9th Inter- national Conference on Computational Intelligence and Communication Networks (CICN).

H.C. Manjunatha and R.Mohanasundaram, “BRNADS: Big data real-time node anomaly detection in social networks,” 2nd International Conference on Inventive Systems and Control (ICISC), 2018.

S. Marchal, X. Jiang, R. State, R and T. Engel, “A Big Data Architecture for Large Scale Security Monitoring,” In Proceedings of the IEEE International Congress on Big Data (BIGDATACONGRESS ’14). IEEE Computer Society, Washington, DC, USA, 2014, pp. 56–63.

Descargas

Publicado

2021-01-01

Número

Sección

Artículos Científicos para el número regular

Cómo citar

[1]
“Arquitectura de Analítica de Big Data para Aplicaciones de Ciberseguridad”, LAJC, vol. 8, no. 1, pp. 22–37, Jan. 2021, Accessed: Oct. 08, 2025. [Online]. Available: https://lajc.epn.edu.ec/index.php/LAJC/article/view/219

Artículos más leídos del mismo autor/a