Método ANN-MoC para Problemas Inversos de Transporte Transitorio en un Dominio Unidimensional
Palabras clave:
red neuronal artificial, método de las características, transporte de particulas neutras, problemas inversosResumen
Transport problems of neutral particles have important applications in engineering and medical fields, from safety and quality protocols to optical medical procedures. In this paper, the ANN-MoC approach is proposed to solve the inverse transient transport problem of estimating the absorption coefficient from scalar flux measurements at the boundaries of the model domain. The central idea is to fit an Artificial Neural Network (ANN) using samples generated by direct solutions computed by a Method of Characteristics (MoC) solver. The direct solver validation is performed on a manufactured solution problem. Two inverse problems are then presented for testing the ANN-MoC method. In the first, a homogeneous medium is assumed, and, in the second, the medium is heterogeneous with a piecewise constant absorption coefficient. We show that the method can achieve good estimates, with accuracy depending on that of the direct solver. We also include a test of sensibility by studying the propagation of noise on the input data. The results highlight the potential of the proposed method to be applied to a broader range of inverse transport problems.
Descargas
Descargas
Publicado
Número
Sección
Licencia
Aviso de derechos de autor/a
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la Creative Commons Attribution-Non-Commercial-Share-Alike 4.0 International, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores a compartir su trabajo en línea (por ejemplo: en repositorios institucionales o páginas web personales) antes y durante el proceso de envío del manuscrito, ya que puede conducir a intercambios productivos, a una mayor y más rápida citación del trabajo publicado.
Descargo de Responsabilidad
LAJC en ningún caso será responsable de cualquier reclamo directo, indirecto, incidental, punitivo o consecuente de infracción de derechos de autor relacionado con artículos que han sido presentados para evaluación o publicados en cualquier número de esta revista. Más Información en nuestro Aviso de Descargo de Responsabilidad.




