Evaluating the accuracy of manual classification in satellite images using supervised algorithms
Palabras clave:
Remote sensing, Machine learning, Infrared imaging, Data scienceResumen
This research evaluated manual land-cover classification using images extracted from Sentinel-2. Supervised algorithms were applied to validate and enhance this process. Three algorithms were selected based on their computational efficiency: K-Nearest Neighbors (KNN), Random Forest (RF), and Support Vector Machine (SVM).The results show that KNN achieved optimal performance, demonstrating a strong balance between accuracy, F1 score, and runtime compared to RF. RF, in turn, obtained higher precision and F1 scores, indicating its superior ability to correctly identify classes; however, it required greater computational resources. SVM exhibited lower performance in the evaluated metrics but achieved a shorter runtime. Nevertheless, it was identified as the algorithm with the greatest limitations in separating classes within this dataset derived from the different study areas.Overall, the comparison confirmed that the manual classifications developed in QGIS are supported and validated by the application of these supervised methods. The use of such algorithms contributes to improving accuracy, consistency, and efficiency in geospatial classification tasks.
Descargas
Referencias
[1] Ouchra, H., Belangour, A., & Erraissi, A. (2023). Machine learning algorithms for satellite image classification using Google Earth Engine and Landsat satellite data: Morocco case study. IEEE Access, 11, 71127–71142. https://doi.org/10.1109/ACCESS.2023.3293828.
[2] Wang, Y., Sun, Y., Cao, X., Wang, Y., Zhang, W., and Cheng, X. (2023). A review of regional and Global scale Land Use/Land Cover (LULC) mapping products generated from satellite remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 206, 311-334.
[3] Joshi, P., Saxena, P., & Sharma, A. (2024). Trends and Advancements in Satellite Image Classification: From Traditional Methods to Machine Learning Approaches. ResearchGate. 10.13140/RG.2.2.13239.23201.
[4] European Space Agency. (n.d.). Introducing Sentinel-2. ESA. https://www.esa.int/Applications/Observing the Earth/Copernicus/Sentinel- 2/Introducing Sentinel-2.
[5] Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V. R., Murayama, Y., and Ranagalage, M. (2020). Sentinel-2 data for land cover/use mapping: A review. Remote sensing, 12(14), 2291.
[6] Segarra, J., Buchaillot, M. L., Araus, J. L., & Kefauver, S. C. (2020). Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy, 10(5), 641.
[7] Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., ... & Bargellini, P. (2012). Sentinel-2: ESA’s optical high- resolution mission for GMES operational services. Remote sensing of Environment, 120, 25-36.
[8] Fragoso-Campo´n, L., QUIRO´ S, R. E., & GUTIE´RREZ, G. J. (2020).
Clasificacio´n supervisada de ima´genes PNOA-NIR y fusio´n con datos LiDAR-PNOA como apoyo en el inventario forestal. Caso de estu- dio: Dehesas. CUADERNOS DE LA SOCIEDAD ESPAN˜ OLA DE
CIENCIAS FORESTALES: Sociedad Espanola de Ciencias Forestales, 45(3), 77-96.
[9] Zhang, C., Liu, Y., & Tie, N. (2023). Forest land resource information acquisition with sentinel-2 image utilizing support vector machine, k- nearest neighbor, random forest, decision trees and multi-layer percep- tron. Forests, 14(2), 254.
[10] Yuh, Y. G., Tracz, W., Matthews, H. D., & Turner, S. E. (2023). Application of machine learning approaches for land cover monitoring in northern Cameroon. Ecological informatics, 74, 101955.
[11] Thanh Noi, P., & Kappas, M. (2017). Comparison of random forest, k- nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors, 18(1), 18.
[12] Knudby, A. (2021). Accuracy assessment. Pressbooks. https://ecampusontario.pressbooks.pub/remotesensing/chapter/chapter- 7-accuracy-assessment/
[13] Tehsin, S., Kausar, S., Jameel, A., Humayun, M., & Almofarreh, D.
K. (2023). Satellite image categorization using scalable deep learning. Applied Sciences, 13(8), 5108. https://doi.org/10.3390/app13085108.
[14] Belgiu, M., & Dragut, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31.
[15] Maxwell, A. E., Warner, T. A. & Fang, F. (2018). ”Implementation of machine-learning classification in remote sensing: An applied review.” International Journal of Remote Sensing, 39(9), 2784-2817.
[16] Balcik, F. B., Senel, G., & Goksel, C. (2020). Object-Based Classifi- cation of Greenhouses Using Sentinel-2 MSI and SPOT-7 Images: A Case Study from Anamur (Mersin), Turkey. IEEE Journal Of Selected Topics In Applied Earth Observations And Remote Sensing, 13, 2769- 2777. https://doi.org/10.1109/jstars.2020.2996315
[17] Rahman, A., Abdullah, H. M., Tanzir, M. T., Hossain, M. J., Khan, B. M., Miah, M. G., & Islam, I. (2020). Performance of different machine learning algorithms on satellite image classification in rural and urban setup. Remote Sensing Applications Society And Environment, 20, 100410. https://doi.org/10.1016/j.rsase.2020.100410
[18] Feizizadeh, B., Omarzadeh, D., Garajeh, M. K., Lakes, T., & Blaschke, T. (2021). Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine. Journal Of Environmental Planning And Management, 66(3), 665-697. https://doi.org/10.1080/09640568.2021.2001317
[19] Santiago, R. M., Gustilo, R., Arada, G., Magsino, E., & Sybingco,
E. (2021). Performance Analysis of Machine Learning Algorithms in Generating Urban Land Cover Map of Quezon City, Philippines Using Sentinel-2 Satellite Imagery. 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communi- cation and Control, Environment, and Management (HNICEM), 1–6. https://doi.org/10.1109/hnicem54116.2021.9731856
[20] Torres, C., Jéssica Gerente, Rodrigo, Caruso, F., Providelo, L. A., Marchiori, G., & Chen, X. (2022). Canopy Height Map- ping by Sentinel 1 and 2 Satellite Images, Airborne LiDAR data and machine learning. Remote Sensing, 14(16), 4112-4112. https://doi.org/10.3390/rs14164112.
[21] Kumar, A., Kumar, G., Patil, D. S., &Gupta, R. (2024). Evaluating Machine Learning Classifiers for IRS High Resolution Satellite Images Using Object-Based and Pixel-Based Classification Techniques. Journal Of The Indian Society Of Remote Sensing. https://doi.org/10.1007/s12524-024-02084-w.
[22] Purwanto, A. D., Wikantika, K., Deliar, A., & Darmawan, S. (2022). Decision Tree and Random Forest Classification Algorithms for Mangrove Forest Mapping in Sembilang National Park, Indonesia. Remote Sensing, 15(1), 16. https://doi.org/10.3390/rs15010016.
[23] Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/a:1010933404324.
[24] Farhadi, Z., Bevrani, H., Feizi-Derakhshi, M., Kim, W., & Ijaz, M. F. (2022). An Ensemble Framework to Improve the Accuracy of Prediction Using Clustered Random-Forest and Shrinkage Methods. Applied Sciences, 12(20), 10608. https://doi.org/10.3390/app122010608.
[25] Tamamadin, M., Lee, C., Kee, S., & Yee, J. (2022). Regional Typhoon Track Prediction Using Ensemble k-Nearest Neighbor Machine Learning in the GIS Environment. Remote Sensing, 14(21), 5292. https://doi.org/10.3390/rs14215292.
[26] Adugna, T., Xu, W., & Fan, J. (2022b). Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images. Remote Sensing, 14(3), 574. https://doi.org/10.3390/rs14030574.
[27] Du, K., Jiang, B., Lu, J., Hua, J., & Swamy, M. N. S. (2024b). Exploring Kernel Machines and Support Vector Machines: Principles, Techniques, and Future Directions. Mathematics, 12(24), 3935. https://doi.org/10.3390/math12243935.
[28] S. Visa, B. Ramsay, A. Ralescu, and E. Van Der Knaap, “Confusion matrix-based feature selection,” CEUR Workshop Proc., vol. 710, pp. 120-127, 2011.
[29] Pikabea, I. (2022). Review of learning models in the field of question answering [Undergraduate thesis, University of the Basque Country, Faculty of Informatics]. University of the Basque Country.
[30] Nahm, F. (2022). Receiver Operating Characteristic Curve: Overview and Practical Use for Clinicians [Epub 2022 Jan 18]. Korean Journal of Anesthesiology, 75 (1), 25-36. https://doi.org/10.4097/kja.21209
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2026 Zulema Yamileth Cervantes Hernández, Emmanuel Morales García, Cecilia Cruz López , Itzel Alessandra Reyes Flores

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Aviso de derechos de autor/a
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la Creative Commons Attribution-Non-Commercial-Share-Alike 4.0 International, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores a compartir su trabajo en línea (por ejemplo: en repositorios institucionales o páginas web personales) antes y durante el proceso de envío del manuscrito, ya que puede conducir a intercambios productivos, a una mayor y más rápida citación del trabajo publicado.
Descargo de Responsabilidad
LAJC en ningún caso será responsable de cualquier reclamo directo, indirecto, incidental, punitivo o consecuente de infracción de derechos de autor relacionado con artículos que han sido presentados para evaluación o publicados en cualquier número de esta revista. Más Información en nuestro Aviso de Descargo de Responsabilidad.





